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Περίληψη

Μελετάµε µοντέλα για δροµολόγηση και ανάθεση µήκους κύµατος σε οπτι-

κά δίκτυα, µε στόχο να καταδειχθούν ιδιότητες των εν λόγω µοντέλων που

πρέπει να λαµβάνονται υπόψιν κατά την υλοποίηση και ανάπτυξη οπτικών

δικτύων στην πράξη. Πιο συγκεκριµένα, προτείνονται προσεγγιστικοί αλγό-

ϱιθµοι για τη µεγιστοποίηση του πλήθους των ικανοποιούµενων αιτήσεων σε

οπτικά δίκτυα τοπολογίας δακτυλίου όπου ο αριθµός των µηκών κύµατος α-

νά ίνα δίδεται ως µέρος της εισόδου. Οι προτεινόµενοι αλγόριθµοι, οι οποίοι

έχουν όλοι ϕράγµενο λόγο προσέγγισης στη χειρότερη περίπτωση, συγκρί-

νονται και πειραµατικά µε ήδη γνωστούς από τη ϐιβλιογραφία αλγορίθµους.

Από τη σύγκριση προκύπτει ότι ο αλγόριθµος µε τον ϑεωρητικά καλύτερο

λόγο προσέγγισης αποδίδει µεν καλύτερα από τους υπόλοιπους αλλά κα-

ταναλώνει υπερβολικά πολύ χρόνο. Αντίθετα, ένας από τους προτεινόµενους

αλγόριθµους παράγει πολύ ικανοποιητικές λύσεις σε χρόνο που είναι αρκετές

τάξεις µεγέθους µικρότερος από τον χρόνο του καλύτερου αλγορίθµου.

Επιπλέον, µελετάται µία γενίκευση του προβλήµατος όπου κάθε αίτηση

επικοινωνίας έχει ένα δεδοµένο κέρδος, και Ϲητείται η µεγιστοποίηση του

συνολικού κέρδους των ικανοποιούµενων αιτήσεων. Προτείνεται ένας εξαι-

ϱετικά γρήγορος, καθαρά συνδυαστικός και εύκολος στην υλοποίηση αλγό-

ϱιθµος για το πρόβληµα αυτό, ο οποίος έχει χειρότερο λόγο προσέγγισης

από έναν ήδη γνωστό αλγόριθµο, όµως καταφέρνει να παράγει ανταγωνιστι-

κές λύσεις και µάλιστα σε ορισµένες περιπτώσεις καλύτερες από όλους τους

άλλους αλγορίθµους που συµπεριλαµβάνονται στη µελέτη. Από την πειρα-

µατική σύγκριση προκύπτει το συµπέρασµα ότι ο προτεινόµενος αλγόριθµος

αποτελεί ιδανική επιλογή όταν απαιτούνται λύσεις στο πρόβληµα σε σύντοµο

χρονικό διάστηµα.

Μελετώνται παιγνιοθεωρητικά µοντέλα για τη δροµολόγηση και την ανά-

ϑεση µηκών κύµατος σε οπτικά δίκτυα πολλαπλών ινών. Ειδικότερα, πα-

ϱουσιάζεται µια πλήρης ανάλυση του κόστους της αναρχίας όταν οι παίκτες

επιλέγουν εγωιστικά το µήκος κύµατος ήδη δροµολογηµένων αιτήσεων επι-

κοινωνίας, χρεώνονται µε ϐάση την µέγιστη πολλαπλότητα του µήκους κύµα-

τος που επέλεξαν κατά µήκος του µονοπατιού στο οποίο έχει δροµολογηθεί η

αίτηση, και το κοινωνικό κόστος καθορίζεται από την µέγιστη πολλαπλότητα



µήκους κύµατος που εµφανίζεται σε ολόκληρο το δίκτυο. Αποδεικνύεται ότι

το παίγνιο που ορίζεται µε αυτόν τον τρόπο συγκλίνει πάντοτε σε ισορροπία

Nash σε πεπερασµένο αριθµό κινήσεων, ενώ προτείνονται αλγόριθµοι για τον

υπολογισµό κοινωνικά ϐέλτιστης ισορροπίας Nash και προσεγγιστικά ϐέλτι-

στης ισορροπίας Nash σε συγκεκριµένες τοπολογίες. Αποδεικνύεται ότι το

κόστος της αναρχίας µπορεί να γίνει αυθαίρετα µεγάλο ακόµη και σε δεν-

δρικές τοπολογίες δικτύων µε µέγιστο ϐαθµό τρία. ΄Οµως, στην περίπτωση

του δακτυλίου και της αλυσίδας, το κόστος της αναρχίας ϕράσσεται από µία

σταθερά αν το πλήθος των διαθέσιµων µηκών κύµατος δεν είναι πολύ µεγάλο

σε σχέση µε το ϕορτίο του δικτύου, υπόθεση που καλύπτει ουσιαστικά την

πλειοψηφία των περιπτώσεων που µπορεί να εµφανιστούν στην πράξη.

Προς επέκταση του προηγούµενου µοντέλου, προτείνεται ένα γενικότερο

πλαίσιο µελέτης των παιγνίων εγωιστικής δροµολόγησης και ανάθεσης µη-

κών κύµατος σε οπτικά δίκτυα πολλαπλών ινών, υπό διάφορες συναρτήσεις

κόστους των παικτών και υπό διάφορες συναρτήσεις κοινωνικού κόστους. Α-

ποδεικνύονται άνω και κάτω ϕράγµατα για το κόστος της αναρχίας των εν

λόγω παιγνίων.

Τέλος, µελετάται η πολυπλοκότητα του προβλήµατος χρονικού προγραµ-

µατισµού ενός συνόλου δροµολογίων που πρέπει να εκτελούνται περιοδικά µε

δοσµένη συχνότητα σε ένα δίκτυο µεταφορών, έτσι ώστε να µεγιστοποιούνται

οι αποστάσεις ασφαλείας µεταξύ διαδοχικών οχηµάτων που χρησιµοποιούν

το ίδιο τµήµα του δικτύου. Για την επίλυση αυτού του προβλήµατος απο-

δεικνύεται και αξιοποιείται η σύνδεσή του µε ένα πρόβληµα χρωµατισµού

µονοπατιών που έχει χρησιµοποιηθεί κατά κόρον για τη µοντελοποίηση προ-

ϐληµάτων δροµολόγησης και ανάθεσης µηκών κύµατος σε οπτικά δίκτυα.

΄Ετσι, καταδεικνύεται η γενικότητα των γραφοθεωρητικών µοντέλων χρωµατι-

σµού µονοπατιών που µελετήθηκαν στη διατριβή.

Λέξεις-κλειδιά οπτικά δίκτυα, οπτικά δίκτυα πολλαπλών ινών, πολυπλεξί-
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Abstract

We study models for routing and wavelength assignment in optical net­

works, aiming at showing properties of these models that must be taken

into consideration when optical networks are deployed in practice. More

specifically, we propose approximation algorithms for maximizing the num­

ber of satisfied requests in optical ring networks where the number of

available wavelengths per fiber is given as part of the input. The pro­

posed algorithms, which all possess a bounded approximation ratio, are

also compared experimentally with other algorithms already known from

the literature. From the comparison, we conclude that the algorithm with

the theoretically best approximation ratio produces the best solutions but

consumes too much running time. On the contrary, one of the proposed al­

gorithms produces very satisfactory solutions with a running time several

orders of magnitude faster than the time of the better algorithm.

Moreover, we study a generalization of the problem where every com­

munication request is associated with a given profit, and we seek to max­

imize the total profit of satisfied requests. We propose an extremely fast,

purely combinatorial, and easily implemented algorithm for this problem,

which has worse approximation ratio than an already known algorithm,

but manages to produce competitive solutions—in some cases, it produces

better solutions than all the other algorithms included in the study. From

the experimental comparison, we conclude that the proposed algorithm is

a decent choice whenever we require decent solutions in limited running

time.

We also study game­theoretic models for routing and wavelength as­

signment in multifiber optical networks. We present a full analysis of the

price of anarchy when players selfishly choose the wavelength of already

routed communication requests, they are charged according to the max­

imum fiber multiplicity incurred by their choice of wavelength, and the

social cost is determined by the maximum wavelength multiplicity that

appears at any edge of the network. We prove that the game thus de­

fined always converges to a Nash equilibrium in a finite number of moves,

and also propose algorithms for efficiently computing socially optimal and



approximate Nash equilibria in specific network topologies. The price of

anarchy can grow unbounded even in tree networks with maximum de­

gree three. However, in the case of chains and rings, the price of anarchy

is bounded by a constant when the number of available wavelengths is

not too large compared to the load of the network—an assumption which

covers most cases that can appear in practice.

Extending the previous model, we propose a general framework for

studying selfish routing and wavelength assignment games in multifiber

optical networks, under player cost and social cost functions. We prove

upper and lower bounds on the price of anarchy of these games.

Finally, we study the complexity of scheduling a set of routes that must

be executed periodically in a transportation network with a given period,

so that the safety distance distance between successive vehicles that use

the same portion of the network is maximized. For solving this problem,

we prove and utilize its connection with a path coloring problem which has

been used extensively for modeling routing and wavelength assignment

problems in optical networks. Thus, we show the generality of the graph­

theoretic path coloring models which we studied in the thesis.

Keywords optical networks, multifiber optical networks, wavelength divi­

sion multiplexing, path coloring, arc coloring, path multicoloring, request

satisfaction, routing, wavelength assignment, selfish routing, selfish wave­

length assignment, non­cooperative games, Nash equilibria, price of an­

archy, train scheduling, delay­tolerant scheduling, periodic timetabling,

approximation algorithms
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Προλεγόµενα

Η παρούσα διατριβή εκπονήθηκε στο Εργαστήριο Λογικής και Επιστήµης

Υπολογισµών (Corelab) της Σχολής Ηλεκτρολόγων Μηχανικών και Μηχα-

νικών Υπολογιστών του Εθνικού Μετσόβιου Πολυτεχνείου.1 Το εργαστήριο

διαθέτει πολυετή εµπειρία σε αλγοριθµικά ϑέµατα δροµολόγησης και ανάθε-

σης µήκους κύµατος σε οπτικά δίκτυα. Η συνεργασία µου µε το εργαστήριο

ξεκίνησε µε την εκπόνηση της διπλωµατικής µου εργασίας για το ∆ίπλωµα

Ηλεκτρολόγου Μηχανικού και Μηχανικού Υπολογιστών, το ϕθινόπωρο του

2003. Στη συνέχεια, είχα την τιµή να γίνω δεκτός ως υποψήφιος διδάκτο-

ϱας υπό την επίβλεψη του Καθηγητή ΕΜΠ κ. Στάθη Ζάχου και από το 2005

ξεκίνησα να εργάζοµαι στην περιοχή που τώρα, τέσσερα χρόνια αργότερα,

αποτελεί το αντικείµενο αυτής της διατριβής.

∆ιάρθρωση της ∆ιατριβής

Το πρώτο κεφάλαιο χρησιµεύει ως µια µικρή εισαγωγή σε ϑέµατα οπτικών

δικτύων και ϑέτει τα πρώτα προβλήµατα που ϑα µας απασχολήσουν αργότερα

στη διατριβή.

Στο δεύτερο και στο τρίτο κεφάλαιο προτείνουµε προσεγγιστικούς αλγό-

ϱιθµους για προβλήµατα ϐέλτιστης δροµολόγησης και ανάθεσης µήκους κύ-

µατος σε οπτικά δίκτυα και τους συγκρίνουµε πειραµατικά µε άλλους αλγό-

ϱιθµους που είναι ήδη γνωστοί από τη ϐιβλιογραφία.

Στο τρίτο και στο τέταρτο κεφάλαιο µελετάµε το κόστος αναρχίας παι-

γνιοθεωρητικών µοντέλων για δροµολόγηση και ανάθεση µήκους κύµατος σε

οπτικά δίκτυα πολλαπλών ινών.

Στο έκτο και τελευταίο κεφάλαιο ασχολούµαστε µε ένα πρόβληµα από την

επιστήµη µεταφορών, το οποίο µελετάµε χρησιµοποιώντας ένα µοντέλο που

1Η διατριβή αποτελεί υποέργο του προγράµµατος ΠΕΝΕ∆ 03Ε∆/285. Το έργο συγχρη-

µατοδοτήθηκε από την Ευρωπαϊκή ΄Ενωση (Ευρωπαϊκό Κοινωνικό Ταµείο) κατά 75%, από

το Ελληνικό ∆ηµόσιο (Υπουργείο Ανάπτυξης, Γενική Γραµµατεία ΄Ερευνας και Τεχνολογίας)

κατά 25% και από τον Ιδιωτικό Τοµέα, στο πλαίσιο του Μέτρου 8.3 του Επιχειρησιακού

Προγράµµατος Ανταγωνιστικότητα—Γ΄ Κοινοτικό Πλαίσιο Στήριξης.



έχει χρησιµοποιηθεί κατά κόρον για την περιγραφή προβληµάτων ϐελτιστο-

ποίησης σε οπτικά δίκτυα. ΄Ετσι, καταδεικνύεται η γενικότητα των γραφοθε-

ωρητικών µοντέλων χρωµατισµού µονοπατιών µε τα οποία ασχολούµαστε στη

διατριβή.
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Chapter 1

Introduction

An optical network is a communications network in which physical links

between nodes of the network are implemented with optical fibers. This

setup may also be referred to as an all­optical network in order to stress the

fact that all communication is carried out in the optical domain. By con­

trast, in almost­all­optical networks a certain amount of electronic switch­

ing may be involved.

Optical networking is widely recognized as the technology of choice

for surface communication networks. When compared to legacy copper

wire, optical fibers offer huge bandwidth, low attenuation, and immunity

to electromagnetic interference. On some occasions, optical fibers have

been used as a simple alternative to copper wire, meaning that the op­

tical signal used a single light frequency on the fiber and the fiber itself

acted as a simple point­to­point link of high bandwidth. However, the

ample bandwidth available on a single optical fiber can be exploited more

efficiently: a dominating technology in contemporary all­optical network­

ing called Wavelength Division Multiplexing (WDM) allows for ‘‘splitting’’ the

fiber bandwidth into multiple independent channels (wavelengths), each

one operating at a different light frequency. With WDM, each wavelength

offers bandwidth comparable to the bandwidth that was utilized in the ab­

sence of WDM. We will refer to an all­optical network that utilizes WDM as

a WDM network.

A communication request is described by its source node and its target

node and is considered satisfied when the network makes it possible for a

continuous data stream originating from the source to reach the target. In

order to satisfy a communication request in an all­optical WDM network,

one has to establish a path which connects the source to the target using

the links available on the network. Following that, one also has to specify

the channel that will be utilized by the data stream on each fiber of the

27
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path. This is achieved by reserving the corresponding wavelength on each

fiber. The first step is referred to as ‘‘routing’’ and the second step is

referred to as ‘‘wavelength assignment’’.

Technologically, it is possible to have a communication request using

different wavelengths on different fibers. One way to accomplish this is

by planting a piece of terminal equipment called ‘‘wavelength converter’’

on each node of the path where a change of wavelength is required. A

second option is to convert the data stream into electronic form and then

re­modulate it on a different wavelength. The first option requires expen­

sive equipment, whereas the second option introduces unacceptable over­

head because optoelectronic conversion is significantly slower than purely

optical switching. For these reasons, it is common practice to enforce the

constraint that a communication request must use the same wavelength

on all the fibers which it traverses. Let us summarize the two constraints

that limit our routing and wavelength assignment options in an all­optical

WDM network:

• Each request must use a single wavelength on all the fibers that it

traverses (wavelength continuity constraint).

• If two requests use the same fiber, then they must use different wave­

lengths.

The interested reader is referred to a survey by Dutta and Rouskas [29]

and references therein for a broader exposition of optical network compo­

nents and further options for routing in WDM networks. In the following,

we will deal only with all­optical WDM networks.

1.1 Modeling an All-Optical WDM Network

A network is represented by an undirected graph G = (V, E), where the

set of nodes V represents the nodes of the network and the set of edges E

represents the physical links of the network. The set of communication

requests is represented by a set R of node pairs. A specific routing for a

request corresponds to a simple path (i.e., a path without repetitions of

nodes) on the graph, connecting its endpoints. We assume that each of

the deployed fibers provides exactly the same wavelengths; if k is the num­

ber of available wavelengths per fiber, then we denote the set of available

wavelengths by W = {α1, . . . , αk}.
Throughout this thesis, we will assume that communication requests

are undirected. Undirected requests correspond to full­duplex communi­

cation. In this mode of communication, it is assumed that each physical
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link in the network is implemented with two parallel optical fibers. Each

fiber is reserved for carrying data in one direction only. Whenever a request

between two nodes is assigned a wavelength, this wavelength is reserved

for this request on all the fibers of both parallel paths connecting the two

nodes; each path is used for transferring data in one direction only. Two

paths are said to overlap when they share a physical link of the network.

We usually identify each wavelength with a color. Then, the wavelength

assignment problem is cast as a path coloring problem in which the fol­

lowing constraints must be obeyed: each path must be assigned a single

color, and overlapping paths must be assigned different colors.

1.2 Optimization Problems in WDM Networks

In practice, the bandwidth available in commercially deployed WDM net­

works is limited to a few dozen, or at most hundred, wavelengths per fiber

and the situation is not expected to change in the near future. Therefore,

given a large enough network load, it will be impossible to satisfy all of the

communication requests simultaneously. Accordingly, in the problems of

routing and wavelength assignment in WDM networks that we will study,

we will assume that the number of available wavelengths per fiber is fixed

to some number k which is given as part of the input. The goal will be,

then, to satisfy as many requests as possible using at most k colors. We

formally define our first problem in graph­theoretic terms as follows:

Problem 1.1 (Maximum Routing and Path Coloring, MaxRPC).

Instance: 〈G,R, k〉, where G is an undirected graph, R is a set of pairs of

nodes (requests), and k ∈ N+ is the number of available colors (wavelengths).

Feasible solution: an assignment of paths to a subset of requests R′ ⊆ R
and a coloring of these paths with at most k colors so that no overlapping

paths are assigned the same color.

Goal: maximize |R′|.
In a variation of the problem, the set of requests given as input may

be already routed. Pre­routed requests arise in settings where the path on

which a request will be routed is decided independently of the wavelength

assignment procedure. This is the case when there are specific routing

requirements, such as shortest­path routing, or when the network operator

decides, for the sake of simplicity, to split the routing and wavelength

assignment process into separate steps.

Problem 1.2 (Maximum Path Coloring, MaxPC).

Instance: 〈G,P, k〉, where G is an undirected graph, P is a set of simple
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paths (pre­routed requests) defined on G, and k ∈ N+ is the number of

available colors.

Feasible solution: a set of paths P′ ⊆ P that can be colored with at most k

colors so that no overlapping paths are assigned the same color.

Goal: maximize |P′|.

Note that, in general, there may be multiple paths defined on the same

set of edges of a graph. We assume that each path in a given instance of

the problem is distinguished by a unique identifier (ID) and thus we speak

of sets instead of multisets of paths. We will not make explicit use of path

ID’s hereafter.

In yet another variation of the problem, each request is associated with

a certain profit (or weight) and the goal is to satisfy a maximum­profit sub­

set of the given requests. Profits may represent priorities or actual revenues

associated with the communication requests. We define the MaxProfit­PC

problem as follows:

Problem 1.3 (Maximum Profit Path Coloring, MaxProfit­PC).

Instance: 〈G,P, w, k〉, where G is an undirected graph, P is a set of simple

paths defined on G, w is a profit function w : P → Q+, and k ∈ N+ is the

number of available colors.

Feasible solution: a set of paths P′ ⊆ P that can be colored with at most k

colors so that no overlapping paths are assigned the same color.

Goal: maximize
∑

p∈P′ w(p).

The MaxPC, MaxRPC, and MaxProfit­PC problems defined above are

NP­hard [75, 64] even in simple topologies such as rings and trees. An al­

gorithm A for a maximization problem Π is a ρ­approximation algorithm (for

0 < ρ ≤ 1) if and only if for every input instance I of Π, A runs in time poly­

nomial in |I | (the size of the encoding of instance I ) and delivers a solution

with total profit at least ρ ·OPT. Here, OPTdenotes the profit of an optimal

solution for I. Analogously, an algorithm for a minimization problem is a

ρ­approximation algorithm for ρ ≥ 1 if and only if it produces a solution

with cost at most ρ ·OPT. For a thorough introduction to NP­completeness

and approximation algorithms the interested reader is referred to standard

textbooks such as [38, 73].

1.3 Preliminary Definitions

We define various network topologies which will be of interest to us through­

out this thesis. A chain is a graph that consists of a single path. A ring
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is a graph that consists of a single cycle. A tree is a graph in which every

pair of nodes is connected by exactly one simple path. A star is a tree that

consists of a central node (sometimes called ‘‘the hub’’) connected with an

edge to all other nodes of the graph; these are the only edges that appear

in the graph. Observe that chains and stars are special cases of trees.

For a more thorough introduction to graph­theoretic concepts the reader

is referred to any standard textbook on graph theory, e.g. [28].

Given a graph G = (V, E) and a set of requests R or paths P, we will

use n for the size of set V and m for the size of set R or P (whichever is

applicable). For a fixed routing of requests, we will denote by L(e) the load

of an edge e ∈ E, i.e. the number of paths that use edge e. The maximum

load over all edges will be simply called load and denoted by L.





Chapter 2

Maximum Request Satisfaction in WDM

Rings

2.1 Introduction

We follow an approach considered in several papers [65, 32, 63, 64], that

of maximizing the number of requests that can be served at the same time

given that the number of wavelengths is limited. Here we study the problem

in rings, which is a fundamental network topology and is frequently de­

ployed in practice (for example, in the case of SONET rings—Synchronous

Optical Network rings). Moreover, the ring topology is the simplest topology

where routing decisions are important, and also one of the simplest topolo­

gies for which the MaxPC and MaxRPC problems are NP­hard [75, 64].

In this chapter, we consider the two problems MaxPC and MaxRPC.

Recall that in the first the routing is pre­determined and only a color as­

signment is sought, while in the second both a routing and a color assign­

ment are sought. We perform an experimental evaluation of a number of

algorithmic approaches for these problems in rings [10]. We first propose

a new greedy heuristic for both problems which is very fast and easy to im­

plement. We also develop improved variations of approximation algorithms

that have been proposed in [75, 63, 64].

We end up with a bunch of seven algorithms for each problem. The

comparative study of their performance, in terms of satisfied requests and

running time, offers some interesting insights. All algorithms almost al­

ways manage to satisfy many more requests than indicated by their worst­

case analysis. There are two simple algorithms that achieve satisfactory

solutions very fast. The iterative algorithm usually finds largest solutions,

despite the fact that it has the worst theoretical approximation ratio among

33
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the more sophisticated algorithms. One of our improved algorithms com­

petes well with the iterative algorithm while being several times faster.

2.1.1 Related Work

MaxPC in chains is known as the ‘‘k­coloring of intervals’’ problem which

can be solved exactly [22] in polynomial time. For MaxRPC in rings, [63]

gives a 2

3
­approximation algorithm for the undirected problem and a 7

11
­

approximation algorithm for the directed problem; for MaxPC in rings a
2

3
­approximation is described in [64]. Wan and Liu [75] present

(

1 − 1

e

)

­

approximation algorithms for MaxRPC in rings and for MaxPC in trees,

as well as a constant approximation algorithm for MaxRPC in meshes.

Their algorithms employ successive calls to algorithms that solve MaxRPC

or MaxPC in instances with one available color (also known as the Maxi­

mum Edge­Disjoint Paths problem). Using the same technique, Erlebach

and Jansen [33] provide a
(

1 − 1

e

)

­approximation algorithm for MaxRPC in

bounded­degree bidirected trees and a 0.451­approximation algorithm for

general bidirected trees. The on­line version of MaxRPC has been studied

in [6] where a general technique to obtain a (ρ + 1)­competitive algorithm

for arbitrary number of wavelengths from a ρ­competitive algorithm for one

wavelength is presented.

A generalization of MaxPC to multi­fiber networks has been considered

for rings [66] and trees [35], where efficient constant approximation algo­

rithms have been proposed; the problem for general topologies has been

studied in [69] and [3].

2.1.2 Preliminaries

A path which is colored with some color c is called a lonely path if it is the

only path which is colored with color c. A request is called a lonely request

if it is routed and colored so that the corresponding path is a lonely path.

Two different requests are called compatible (with each other) if they can

be routed so that the corresponding paths are not overlapping.

Definition 2.1 (Request compatibility graph). Let 〈G,R, k〉 be an instance

of MaxRPC. The corresponding request compatibility graph is an undirected

graph H = (R, E), where

E = {(r, r ′) : r and r ′ are compatible requests in R} . (2.1)

If we remove an edge e from a ring we get a chain; we call such an

edge a separation edge. Any separation edge induces a natural partition of
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the paths defined on the ring into two sets: the first set contains all those

paths that actually use the separation edge, and the second set contains

the rest of the paths.

Definition 2.2 (Path compatibility graph). Let 〈G,P, k〉 be an instance of

MaxPC where G is a ring, and let e be a separation edge partitioning the path

set into Pe and Pc = P \ Pe where Pe is the set of paths using edge e. The

corresponding path compatibility graph is a bipartite graph H = (Pc∪Pe, E),
where

E = {(p, q) ∈ Pc × Pe : p and q do not overlap} . (2.2)

2.2 Algorithms for Maximum Path Coloring

In this section we focus on the case in which requests are pre­routed, that

is, we study the MaxPC problem. Recall that in this case an instance

actually consists of a graph G, a set of paths P and a number of colors k

and the goal is to color as many paths as possible using the given colors,

without assigning the same color to overlapping paths.

The problem can be solved exactly in O (n +w) time if the input graph

is a chain, using the algorithm of Carlisle and Lloyd [22]. That algorithm

has the following useful property:

Property 2.3. If k ≥ L the Carlisle­Lloyd algorithm colors all paths using

exactly L colors. If k < L the algorithm colors a maximum cardinality subset

of paths of load exactly k.

Many of the algorithms presented in this and the next chapter make

use of the Carlisle­Lloyd algorithm in order to optimally color chain subin­

stances.

2.2.1 Shortest-First Algorithm

We first present a new, greedy algorithm for MaxPC in rings (Algorithm 1).

This algorithm is easy to implement and very fast; nevertheless we will see

that it is almost as competent as the more sophisticated algorithms that

will follow.

We next show that this simple algorithm always achieves a solution of

size at least one­third the size of an optimal solution.

Theorem 2.4. MaxPC­SF is an 1

3
­approximation algorithm for the MaxPC

problem in rings.
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Algorithm 1 MaxPC­SF

Input: an instance 〈G,P, k〉 of MaxPC, where G is a ring

1: Sort paths in P in order of non­decreasing length.

2: for all paths p ∈ P do

3: Assign to p the smallest color that is available on all edges of p (if

such a color exists, otherwise do nothing).

4: end for

Proof. Let P* be the set of paths colored by an optimal solution and P′ be

the set of paths colored by MaxPC­SF. Let also P*
i (resp. P′i ) be the subset

of P* (resp. P′) that consists of paths colored with color αi.

Let D be any set of non­overlapping paths on the ring that remain

uncolored at the end of the execution of MaxPC­SF. Fix some color αj and

consider some p ∈ P′j . If p overlaps with three or more paths from D, then

at least one of them is strictly shorter than p and cannot overlap with any

other path in P′j . This implies that MaxPC­SF would have considered this

path before considering path p, and at that point the algorithm would have

been able to color it with color αj. This contradicts the assumption that

the paths in D remain uncolored at the end of the execution of MaxPC­SF.

Therefore, each path in P′j overlaps with at most two paths in D. This

implies that

|D| ≤ 2 ·
∣

∣

∣P′j
∣

∣

∣ . (2.3)

Note that Equation 2.3 holds for all j, 1 ≤ j ≤ k.

Now, let Di = P*
i \P′, that is, Di consists of paths that are colored with αi

in the optimal solution, but were not colored by MaxPC­SF. Clearly, Di is

a set of non­overlapping paths that remain uncolored at the end of the

algorithm. Consequently, from Equation 2.3, for all i, 1 ≤ i ≤ k:

|Di | ≤ 2 · min
1≤j≤k

∣

∣

∣P′j
∣

∣

∣ ≤ 2 · |P
′|

k
. (2.4)

Let us now observe that P* ⊆ P′ ∪⋃

1≤i≤k Di . This implies that

∣

∣

∣P*
∣

∣

∣ ≤ |P′| +
∑

1≤i≤k

|Di | ≤ |P′| + k ·
(

2 · |P
′|

k

)

= 3 · |P′| , (2.5)

which completes the proof.

Equation 2.4 implies that MaxPC­SF behaves much better on the aver­

age. For example, if some color αj has been used fewer than
|P′ |
ck

times, for

some c > 1, then Equation 2.5 becomes

∣

∣

∣P*
∣

∣

∣ ≤
(

1 +
2

c

)

· |P′| ; (2.6)



2.2. ALGORITHMS FOR MAXIMUM PATH COLORING 37

Algorithm 2 MaxPC­CombSol

Input: an instance 〈G,P, k〉 of MaxPC, where G is a ring

1: Select as separation edge some e ∈ E with minimum load; partition

path set P into two path sets Pe and Pc, where Pe contains all paths

in P that pass through e, and Pc = P \ Pe.

2: Call the Carlisle­Lloyd algorithm [22] for MaxPC in chains on input

〈G − e,Pc, k〉.
3: Find a maximum matching M in the corresponding path compatibility

graph.

4: Uncolor lonely paths.

5: while there exists an edge e′ ∈ M and free colors remain do

6: Color the two endpoints (paths) of e′ with a free color; remove e′

from M .

7: Uncolor lonely paths.

8: end while

9: while free colors remain do

10: Color an uncolored path in P with a free color.

11: end while

12: for all colors c do

13: Find all uncolored paths that do not overlap with any path colored

with c; let Pu be this set.

14: Find a maximum subset of non­overlapping paths of Pu and color

them with c.

15: end for

that is, the solution returned is near­optimal for large c. Indeed, we will see

in Section 2.4 that MaxPC­SF usually achieves quite satisfactory solutions.

A simple implementation of the algorithm has running time O (nmk).

2.2.2 Combining Solutions

Algorithm MaxPC­CombSol uses two main techniques: the one colors a

chain instance and the other colors pairs of non­overlapping paths. The

algorithm in fact combines the two solutions so as to retain some key

properties of both. This algorithm is an improved version of the algorithm

presented in [64]. The main improvement is an additional last step that

takes care of remaining paths that possibly lie on edges where some color

is still free. Details are presented in Algorithm 2.

It has been shown in [64] that the algorithm presented there achieves

an approximation guarantee of 2

3
. Consequently, this holds for MaxPC­
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CombSol as well, since the main difference of the two algorithms is the

addition of the final for­loop which may only augment the solution achieved

in the previous steps.

Steps 12­15 of Algorithm 2 cost O (nmk) time. Therefore, the time

complexity of Algorithm MaxPC­CombSol is O (

nmk +m2
)

, where O (

m2
)

is

the complexity of the bipartite matching computation, using an algorithm

by Ma and Spinrad [52].

Algorithm MaxPC-CombSol-all The selection of the separation edge may be

crucial for the average performance of the algorithm. Therefore, we will

consider a new version of the algorithm which consists of n executions

of MaxPC­CombSol, each time with a different separation edge. The time

complexity of this algorithm, MaxPC­CombSol­all, is O (

n(nmk +m2)
)

.

2.2.3 Selecting the Best Solution

The MaxPC­BestSol algorithm is an adaptation of MaxRPC­BestSol (see

Section 2.3.3). It solves each instance of the problem with two independent

procedures, called Chain Step and Matching Step, and merely chooses the

best solution between the solutions of these procedures. The Chain Step

performs the same actions as Steps 1 and 2 of Algorithm 2. In addition,

any color that remains after executing these steps is used to color a single

path in Pc. The Matching Step performs the same actions as Steps 3

and 5­6 of Algorithm 2.

It is to be noted that MaxPC­BestSol achieves the same worst­case ap­

proximation ratio as the more involved algorithm MaxPC­CombSol. The

proof follows from a straightforward adaptation of the proof for the approx­

imation ratio of MaxRPC­BestSol, which appears in [63].

Theorem 2.5. MaxPC­BestSol is a 2

3
­approximation algorithm for the MaxPC

problem in rings.

The time complexity of the algorithm is determined by the bipartite

matching computation which can be done in O (

m2
)

time, using an algo­

rithm by Ma and Spinrad [52].

Algorithm MaxPC-Chain The Chain Step of MaxPC­BestSol can be used as

an algorithm on its own. Moreover, it can be shown [64] that it achieves

an approximation guarantee of 1

2
. Its time complexity is O (n +m) [64]. We

will refer to this algorithm as MaxPC­Chain.
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Algorithm MaxPC-BestSol-all The selection of the separation edge e may

again play an important role on the average performance of the algorithm,

although it does not affect the worst­case approximation ratio. Therefore,

we will also evaluate a new version of the algorithm, called MaxPC­BestSol­

all, which consists of n executions of MaxPC­BestSol, each time with a

different separation edge. Clearly, the time complexity of MaxPC­BestSol­

all is O (

nm2
)

.

2.2.4 Iterative Algorithm

Algorithm MaxPC­Iter was proposed by Wan and Liu [75] and works as

follows: given a set of paths P and k available colors it examines colors

one by one. For each color c, it computes a maximum subset S of non­

overlapping paths. To achieve this, for each path p ∈ P it determines a

maximum subset Sp of P that can be colored with the same color as p

(using e.g. an algorithm for the well known Activity Selection Problem [25,

p. 371]), and picks the largest such subset. It then colors paths in S with

color c, removes S from P and proceeds with the next color.

Algorithm MaxPC­Iter achieves an approximation ratio of 1−
(

1 − 1

k

)k

>

1− 1

e
≈ 0.632; the ratio 1−

(

1 − 1

k

)k

is slightly worse (at least for k > 10) than

the approximation guarantee of 2

3
achieved by algorithms MaxPC­BestSol,

MaxPC­BestSol­all, MaxPC­CombSol, and MaxPC­CombSol­all. The time

complexity of this algorithm is O (

km2 logm
)

.

2.3 Algorithms for Maximum Routing and Path Coloring

2.3.1 Shortest-First Algorithm

We present MaxRPC­SF (see Algorithm 3), which is a heuristic analogous

to the simple heuristic for MaxPC; the difference is that it also takes care

of the routing by imposing shortest­path routing on all communication

requests. We show that MaxRPC­SF is an 1

5
­approximation algorithm for

MaxRPC in rings. A simple implementation of the algorithm has running

time O (nmk).

Theorem 2.6. MaxRPC­SF is an 1

5
­approximation algorithm for the MaxRPC

problem in rings.

Proof. Let R* be the set of requests satisfied by an optimal solution and R′
be the set of requests satisfied by MaxRPC­SF. Let also R*

i (resp. R′i ) be
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Algorithm 3 MaxRPC­SF

Input: an instance 〈G,R, k〉 of MaxRPC, where G is a ring

1: Perform shortest­path routing on R, thus obtaining a set of routed

requests P.

2: Sort paths in P in order of non­decreasing length.

3: for all paths p ∈ P do

4: Assign to p the smallest color that is available on all edges of p (if

such a color exists, otherwise do nothing).

5: end for

the subset of R* (resp. R′) that consists of requests colored with color αi.

Denote by R̆*
i the subset of R*

i that uses longest­path routing. For any set of

requests A, let sp(A) denote the set of paths corresponding to shortest­path

routing of all requests in A.

Let D ⊆ R be any subset of requests that remain uncolored at the end

of the execution of MaxRPC­SF, with the additional property that sp(D)
contains non­overlapping paths. Fix some color αj and consider some

r ∈ R′j . If the shortest­path routing of r overlaps with three or more paths

from sp(D), then at least one of them is strictly shorter than the shortest­

path routing of r and cannot overlap with any other path in sp(R′j ). This

implies that MaxRPC­SF would have considered the corresponding request

before considering request r, and at that point the algorithm would have

been able to color it with color αj. This contradicts the assumption that the

requests in D remain uncolored at the end of the execution of MaxRPC­

SF. Therefore, each path in sp(R′j ) overlaps with at most two paths in sp(D).
This implies that

|D| ≤ 2 ·
∣

∣

∣R′j
∣

∣

∣ . (2.7)

Note that Equation 2.7 holds for all j, 1 ≤ j ≤ k.

Now, let Di =

(

R*
i \ R̆*

i

)

\ R′, that is, Di consists of requests that are

shortest­path routed and colored with αi in the optimal solution, but

were not satisfied by MaxRPC­SF. Clearly, sp(Di) contains non­overlapping

paths and applying Equation 2.7 we get, for all i, 1 ≤ i ≤ k:

|Di | ≤ 2 · min
1≤j≤k

∣

∣

∣R′j
∣

∣

∣ ≤ 2 · |R
′|

k
. (2.8)

Let us now observe that

R*
=

⋃

1≤i≤k

(

R*
i \ R̆*

i

)

∪
⋃

1≤i≤k

R̆*
i . (2.9)
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By the definition of Di , we get that R*
i \ R̆*

i ⊆ Di ∪ R′. Plugging this into

Equation 2.9, we get that

R* ⊆
⋃

1≤i≤k

(

Di ∪ R′
) ∪

⋃

1≤i≤k

R̆*
i = R′ ∪

⋃

1≤i≤k

Di ∪
⋃

1≤i≤k

R̆*
i . (2.10)

Therefore,
∣

∣

∣R*
∣

∣

∣ ≤ |R′| +
∑

1≤i≤k

|Di | +
∑

1≤i≤k

∣

∣

∣R̆*
i

∣

∣

∣ . (2.11)

Finally, note that if
∣

∣

∣R*
i

∣

∣

∣ ≥ 3, then at most one request in R*
i can be

longest­path routed. So, in any case,

∣

∣

∣R̆*
i

∣

∣

∣ ≤ 2 . (2.12)

Plugging Equations 2.8 and 2.12 into Equation 2.11, we have that

∣

∣

∣R*
∣

∣

∣ ≤ |R′| + k ·
(

2 · |R
′|

k

)

+ 2k = 3 · |R′| + 2k . (2.13)

This completes the proof because either k ≤ |R′|, whence
∣

∣

∣R*
∣

∣

∣ ≤ 5 · |R′|, or

there are unused colors at the end of the execution of MaxRPC­SF, which

implies that the solution returned by the algorithm is optimal.

2.3.2 Combining Solutions

Our second algorithm for MaxRPC (MaxRPC­CombSol, see Algorithm 4) is

the analogue of MaxPC­CombSol for the MaxRPC problem.

It can be shown that MaxRPC­CombSol returns a solution which is at

least as large as the solution returned by a 2

3
­approximation algorithm for

MaxRPC in rings that was presented in [63] (we will also implement that

algorithm under the name MaxRPC­BestSol; see Section 2.3.3). Therefore,

MaxRPC­CombSol is a 2

3
­approximation algorithm.

Steps 5­15 of Algorithm 4 cost O (nmk) time. Therefore, the time com­

plexity of Algorithm MaxRPC­CombSol is O (

nmk +m3
)

, where O (

m3
)

is

the time complexity of the maximum matching computation of Step 3.

Algorithm MaxRPC-CombSol-all As before, we will also consider an algo­

rithm consisting of n calls to MaxRPC­CombSol, each with a different

separation edge; we call this algorithm MaxRPC­CombSol­all. The time

complexity of MaxRPC­CombSol­all is O (

n(nmk +m3)
)

.



Algorithm 4 MaxRPC­CombSol

Input: an instance 〈G,R, k〉 of MaxRPC, where G is a ring

1: Select as separation edge some e ∈ E with minimum load with respect

to shortest­path routing; route requests so that paths avoid e; let Pc

denote the resulting set of paths.

2: Call the Carlisle­Lloyd algorithm [22] for MaxPC in chains on input

〈G − e,Pc, k〉.
3: Find a maximum matching M in the corresponding request compatibil­

ity graph.

4: Uncolor lonely requests.

5: while there exists an edge e′ ∈ M with at least one endpoint uncolored

and free colors remain do

6: Color the two endpoints (requests) of e′ with a free color; route the

requests accordingly; remove e′ from M .

7: Uncolor lonely requests.

8: end while

9: while free colors remain do

10: Select an uncolored request in R, route it using the shortest path

and color it with a free color.

11: end while

12: for all colors c do

13: Find all uncolored requests that can be routed without overlapping

with any path colored with c; route them accordingly; let Pu be the

resulting set of paths.

14: Find a maximum subset of non­overlapping paths of Pu and color

them with c.

15: end for



2.4. NUMERICAL RESULTS 43

2.3.3 Selecting the Best Solution

Algorithm MaxRPC­BestSol was presented in [63]. The Chain Step is the

same as Steps 1 and 2 of Algorithm 4. The Matching Step is the same

as Steps 3 and 5­6 of Algortihm 4. As in the case of MaxPC­BestSol, we

independently call the Chain Step and the Matching Step and choose the

best between the two solutions. As shown in [63], MaxPC­BestSol is a
2

3
­approximation algorithm. The time complexity of MaxRPC­BestSol is

determined by the maximum matching computation which can be done in

O (

m3
)

time.

Algorithms MaxRPC-BestSol-all and MaxRPC-Chain In the same manner as in

the case of MaxPC­BestSol, we consider the variation of MaxRPC­BestSol

consisting of n calls to MaxRPC­BestSol, each time with a different separa­

tion edge; we call this algorithm MaxRPC­BestSol­all. We also consider the

Chain Step of MaxRPC­BestSol as a separate algorithm, called MaxRPC­

Chain. It was shown in [63] that MaxRPC­Chain is a 1

2
­approximation

algorithm. The time complexity of MaxRPC­BestSol­all is O (

nm3
)

, and the

time complexity of MaxRPC­Chain is O (n +m).

2.3.4 Iterative Algorithm

Wan and Liu [75] have also proposed an algorithm for MaxRPC in rings,

which we will refer to as MaxRPC­Iter. The algorithm works similarly to

MaxPC­Iter, except that for each color c and for each request r it examines

two paths: the first corresponds to the clockwise routing of r, while the

second corresponds to the counter­clockwise routing of r. In each case,

every other request is routed so as to avoid overlapping with the path

assigned to r, or it is ignored if no such routing exists. After considering

all routings obtained as above, the one that routes a maximum subset S
of requests is chosen and the corresponding paths are colored with the

current color c. The requests in S are then removed from the input and

the algorithm proceeds with the next color. Similarly to MaxPC­Iter, the

iterative algorithm for MaxRPC in rings achieves an approximation ratio of

1 −
(

1 − 1

k

)k

> 1 − 1

e
≈ 0.632 and its time complexity is O (

km2 logm
)

.

2.4 Numerical Results

We implemented all algorithms in C++, making use of the LEDATM class

library of efficient data types and algorithms. All source files were compiled
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with the BorlandTM C++ 5.5 for Win32 compiler, set to generate fastest

possible code. We relied on LEDA routines and classes for graph, array,

list and priority queue operations including sorting and finding matchings

in general graphs. The experiments were run on a PentiumTM 4 clocked at

3.2GHz with 512MB of memory.

For each combination of number of nodes (n), number of paths/requests

(m) and number of available wavelengths (k), we randomly generated two

sets of 60 instances each. For the first set, we assumed uniform distri­

bution of the endpoints of the paths/requests over the nodes of the ring.

For the second set, we assumed normal distribution with standard devi­

ation σ ≈ 2n

15
. We executed each algorithm on these sets of instances and

measured the average execution time and the average number of satisfied

paths/requests. Furthermore, for each of these values we calculated a 95

percent confidence interval which is shown on the plots. In the plots where

we show the number of satisfied paths/requests, we include a computed

upper bound for the sake of comparison.

Note that execution times were measured using the timer class of the

LEDA package, which does not provide for measuring exact processor time.

However, we ran the experiments on a dedicated machine in order to keep

background processes at a minimum.

Computing an upper bound on OPT In order to obtain an estimation of the

performance of our algorithms we propose an efficient way to compute an

upper bound on the value of an optimal solution. We denote by |p| the

length of path p, i.e. the number of edges that path p uses. If requests

are given instead of paths (MaxRPC problem) we consider for each request

r = (i, j) the shortest path p between nodes i and j. We index all paths

in non­decreasing order of their length. It can be easily proven that the

following lemma holds:

Lemma 2.7. Let B be the smallest number such that
∑B+1

i=1 |pi | > nk. Then

B is an upper bound on the number of paths (requests) that can be satisfied

with k colors.

2.4.1 Discussion

A first observation is that all algorithms perform considerably better than

their theoretical guarantee. Indeed, we have included a curve showing

the computed upper bound (UB) in our figures and it turns out that all

algorithms manage to satisfy a good fraction of an optimal solution, very

often better than the theoretically predicted. Taking also into account that
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the upper bound used may be overestimated it is possible that the actual

performance of the algorithms is even better.

The experimental comparison of the algorithms shows that each al­

gorithm for MaxPC has similar behaviour to the corresponding algorithm

for MaxRPC, on instances of similar size. Note, however, that the latter

is slightly slower (since routing is involved) but usually achieves a higher

number of satisfied requests due to the freedom of choosing a more ade­

quate routing for each request.

Clearly, the best algorithms in terms of number of satisfied requests are

Max(R)PC­Iter and Max(R)PC­CombSol­all (see Figures 2.1 and 2.2). How­

ever, it is clear from Figure 2.3 that Max(R)PC­CombSol­all has the worst

time complexity and Max(R)PC­Iter, while faster than Max(R)PC­CombSol­

all, is still quite slow when compared to Max(R)PC­SF, Max(R)PC­Chain,

Max(R)PC­BestSol, and Max(R)PC­CombSol. Among the latter, Max(R)PC­

CombSol appears extremely competitive. In fact, in terms of performance

per time unit spent Max(R)PC­CombSol is clearly the best of all algorithms.

Max(R)PC­Chain seems to be even better with respect to performance/time

ratio, providing solutions that can be considered satisfactory very fast;

however its performance decreases linearly as the number of wavelengths

increases (see Figure 2.4). In contrast, algorithm Max(R)PC­SF, which is

also extremely fast, remains relatively competitive even for large number of

wavelengths. Finally, Max(R)PC­BestSol has practically the same perfor­

mance as the much faster Max(R)PC­Chain and Max(R)PC­BestSol­all has

poor performance while being the most time­consuming algorithm.

It is rather surprising that for large values of k Max(R)PC­Iter exhibits

a clear superiority although it has the theoretically worst approximation

ratio among all the algorithms (with the exception of Max(R)PC­Chain and

Max(R)PC­SF). Figure 2.4 shows that the superiority of Max(R)PC­Iter in­

creases as k increases, but its time complexity depends linearly on k

while all other algorithms are practically independent from k (probably

with the exception of Max(R)PC­CombSol­all). Besides, Max(R)PC­Iter ex­

hibits a super­quadratic dependence on the number of requests m, as

shown in Figures 2.3 and 2.5. A similar dependence on m alse charac­

terizes Max(R)PC­CombSol­all and Max(R)PC­BestSol­all, while all other

algorithms seem to have a sub­quadratic dependence on m.

Finally, Figure 2.5 shows that the time complexity of Max(R)PC­Iter has

a super­quadratic dependence on m (the number of requests), the time

complexity of Max(R)PC­Chain and Max(R)PC­SF is almost linear on m

and the time complexities of the remaining algorithms are quadratic on m.

These differences may become crucial for very large numbers of requests.
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Figure 2.1: Performance of algorithms for MaxPC in terms of the number of

satisfied paths: n = 100, m ranges from 200 to 600, k = 40, uniform distribution.

Top: MaxPC­Chain, MaxPC­CombSol, MaxPC­BestSol, and MaxPC­BestSol­all.

Bottom: MaxPC­SF, MaxPC­CombSol, MaxPC­CombSol­all, and MaxPC­Iter.
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Figure 2.2: Performance of algorithms for MaxRPC in terms of the number of

satisfied requests: n = 100, m ranges from 200 to 600, k = 40, uniform distribu­

tion. Top: MaxRPC­Chain, MaxRPC­CombSol, MaxRPC­BestSol, and MaxRPC­

BestSol­all. Bottom: MaxRPC­SF, MaxRPC­CombSol, MaxRPC­CombSol­all, and

MaxRPC­Iter.
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Figure 2.3: Time performance of algorithms for MaxPC (top) and MaxRPC

(bottom): n = 100, m ranges from 200 to 600, k = 40, uniform distribution.
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Figure 2.4: Performance of algorithms for MaxPC in terms of the number of

satisfied paths (top) and time (bottom): n = 100, m = 500, k ranges from 20 to

100, Gaussian distribution.
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Figure 2.5: Time performance of algorithms for MaxRPC. n = 16, m ranges from

30 to 150, k = 8. Top: uniform distribution. Bottom: Gaussian distribution.
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2.5 Conclusions

We have presented various algorithms for the MaxPC and MaxRPC prob­

lems in rings and have demonstrated results concerning the achieved prac­

tical performance.

To evaluate the experimental results we take into consideration the

number of satisfied requests as well as the time performance. Taking into

account both measures we first remark that Max(R)PC­CombSol is prob­

ably the algorithm of choice for practical purposes, since it achieves one

of the best performances with respect to the number of satisfied requests,

and at the same time its time requirements are relatively low. Of course

Max(R)PC­Iter and Max(R)PC­CombSol­all produce better solutions than

Max(R)PC­CombSol, especially as k increases. Undoubtedly, Max(R)PC­

Iter performs better than all other algorithms for very large k but it gets

much slower at the same time, because its time complexity depends lin­

early on k.

From a practical point of view, we can assume that the number of nodes

and the number of wavelengths are fixed, thus it is important to consider

the behavior of algorithms with respect to the number of requests m. The

superiority of Max(R)PC­CombSol is even more clear in this case consider­

ing its time performance. The next best choice seems to be Max(R)PC­Iter

which exhibits an intermediate time performance.

Max(R)PC­BestSol and Max(R)PC­BestSol­all are not at all competitive

because they fail to provide better solutions than much faster algorithms

such as Max(R)PC­SF, Max(R)PC­Chain, and Max(R)PC­CombSol. The new

greedy heuristic Max(R)PC­SF is a decent choice whenever time is crucial,

since it achieves relatively large solutions while being one of the fastest

algorithms. Tables 2.1 and 2.2 summarize the above observations.

Directions for further research include fine­tuning of some parts of the

algorithms. For example, it would make sense to set a threshold on the

number of iterations of Max(R)PC­Iter and combine it with some other

strategy for the remaining colors; this could result in more acceptable

running times even for large values of k.



Table 2.1: An empirical ranking of the algorithms for problems MaxPC

and MaxRPC with respect to their performance in the experiments in terms of

number of satisfied requests.

Algorithm Request satisfaction

Max(R)PC­Iter [75] ⋆⋆⋆⋆⋆

Max(R)PC­CombSol­all ⋆⋆⋆⋆⋆

Max(R)PC­CombSol [64] ⋆⋆⋆⋆

Max(R)PC­SF [10] ⋆⋆

Max(R)PC­BestSol­all ⋆⋆

Max(R)PC­Chain [22] ⋆

Max(R)PC­BestSol [63] ⋆

Table 2.2: An empirical ranking of the algorithms for problems MaxPC

and MaxRPC with respect to their performance in the experiments in terms of

time efficiency.

Algorithm Time efficiency

Max(R)PC­CombSol [64] ⋆⋆⋆⋆⋆

Max(R)PC­SF [10] ⋆⋆⋆⋆⋆

Max(R)PC­Chain [22] ⋆⋆⋆⋆⋆

Max(R)PC­BestSol [63] ⋆⋆⋆⋆⋆

Max(R)PC­Iter [75] ⋆⋆⋆

Max(R)PC­CombSol­all ⋆

Max(R)PC­BestSol­all ⋆



Chapter 3

Maximum Profit Wavelength

Assignment in WDM Rings

3.1 Introduction

In this chapter we present four algorithms for the MaxProfit­PC problem

in rings with undirected requests. Our algorithms combine ideas from al­

gorithms for MaxPC [64, 75] with new techniques specially designed for

coloring paths with profits. We give theoretical bounds on the approxima­

tion ratio achieved by these algorithms and then move on to perform an

experimental comparison with respect to the total profit of the solutions

they produce and the execution time they require [11, 12].

One of the results of this comparison is that Match­and­Replace, a novel

algorithm that we propose, performs only marginally worse than Iterative,

which is based on a well­known technique and gives the best theoretical

guarantee for the approximation ratio among the implemented algorithms.

At the same time, Match­and­Replace is several orders of magnitude faster

than Iterative. A second finding of the experimental comparison is that

a natural greedy heuristic with non­constant theoretical approximation

guarantee actually performs quite competently and is also exceptionally

fast.

While MaxPC, the cardinality version of the problem, has been stud­

ied by several researchers [75, 32, 64, 21, 22], MaxProfit­PC has been

considered in rather few papers [21, 22]. Both MaxProfit­PC and MaxPC

are NP­hard even in simple networks such as rings and trees; this can be

shown by an immediate reduction from the corresponding color minimiza­

tion problem (see e.g. [75]).

MaxProfit­PC in chains is also known as the ‘‘weighted k­coloring of in­

53
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tervals’’ problem, which can be solved exactly in polynomial time as shown

by Carlisle and Lloyd [22]. In the case of MaxProfit­PC in rings, Caragian­

nis [21] has presented a randomized algorithm based on linear program­

ming that achieves an expected approximation ratio of 0.67. Let us note

here that, although the algorithm in [21] achieves a slightly better worst­

case approximation ratio than the algorithms presented in this chapter,

we have chosen not to include it in our experimental comparison since our

focus is on deterministic and purely combinatorial algorithms.

3.1.1 Preliminaries

Let w : P → Q+ be a function assigning positive rational weights to the

paths in some set P. For any A ⊆ P, we will employ the notation w(A)
for the total weight of A: w(A) =

∑

p∈A w(p). Similarly, for any set S of

subsets of P, we will employ the notation w(S) for the sum of total weights

of the elements of S: w(S) =
∑

A∈Sw(A). Note that, if S contains mutually

disjoint subsets of P, then w(S) = w
(⋃

A∈S A
)

.

We denote by |p| the number of edges of path p. Given a set of paths P
and a coloring thereof, the subset of P that is colored with color αi is

called the i­th color class of P and is denoted by P(i). We will also use

the notation Pq for the subset of P that overlaps with path q, and P¬q for

P \ Pq.

Carlisle and Lloyd [22] give an exact algorithm for MaxProfit­PC in

chains that runs in O (

km logm
)

time. In the sequel, we will often use this

algorithm as a subroutine for the algorithms that we present. We will refer

to this algorithm as the ‘‘Carlisle­Lloyd algorithm’’.

3.2 Match and Replace

We propose a novel algorithm for MaxProfit­PC in rings. The Match­and­

Replace algorithm is based on a popular technique used for rings, namely

to pick a separation edge and remove it from the ring. The set of requests

is then partitioned, with respect to the separation edge, into two subsets:

the subset of requests that use the separation edge, and the subset of re­

quests that do not use it. Observe that the latter subset can be regarded

as an instance of MaxProfit­PC in a chain, and thus it can be colored opti­

mally in polynomial time. After this step, the algorithm tries to color some

of the requests that use the separation edge, possibly sacrificing some of

the requests that have already been colored. To that end, it computes a
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Algorithm 5 Match­and­Replace

Input: an instance 〈G,P, w, k〉 of MaxProfit­PC, where G is a ring

1: Pick an arbitrary separation edge e of the ring; let Pe be the set of paths

that use edge e and Pc = P \ Pe.

2: Color the instance 〈G − e,Pc, w, k〉 optimally, using the Carlisle­Lloyd

algorithm for MaxProfit­PC in chains.

3: Let Pc(i) be the i­th color class of Pc, 1 ≤ i ≤ k (note that some color

classes may be empty).

4: Construct the weighted path compatibility graph H that corresponds to

the separation edge picked in Step 1 and the partial coloring obtained

in Step 2.

5: Find a maximum­weight matching M of H.

6: for all edges (Pc(i), q) ∈ M do

7: Uncolor all paths in Pc(i)q and color path q ∈ Pe with color αi.

8: end for

maximum­weight matching on the corresponding weighted path compati­

bility graph.

Definition 3.1 (Weighted path compatibility graph). Let 〈G,P, w, k〉 be an

instance of MaxProfit­PC where G is a ring, and let e be a separation

edge partitioning the path set into Pe and Pc = P \ Pe where Pe is the

set of paths using edge e. For any partial coloring of the paths in Pc, the

corresponding weighted path compatibility graph is a weighted complete

bipartite graph H = (U, E), where

U = {Pc(i) : 1 ≤ i ≤ k} ∪ Pe (3.1)

and edge weights h : E → Q+ are defined as follows:

h (Pc(i), q) = w(q) −w (Pc(i)
q) . (3.2)

A detailed description of the algorithm is presented in Algorithm 5. We

prove below that this algorithm achieves an approximation ratio of 1

2
, and

that the analysis that we provide is tight.

Theorem 3.2. Match­and­Replace is a 1

2
­approximation algorithm for the

MaxProfit­PC problem in rings.

Proof. Let OPT be the value of any optimal solution of the ring instance,

OPTc be the value of any optimal solution of the instance constrained to
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path set Pc, and OPTe be the value of any optimal solution of the instance

constrained to path set Pe. Because Pe and Pc form a partition of P,

OPT≤ OPTc +OPTe . (3.3)

Let SOLc be the value of the solution obtained in Step 2 of the algorithm

(chain subinstance solution), and SOL be the value of the final solution.

Clearly,

SOL= SOLc + h(M) (3.4)

where h(M) is the sum of the weights of the edges that belong to the

matching M computed in Step 5 (recall that h is the edge weight function of

the weighted path compatibility graph H ). The instance 〈G − e,Pc, w, k〉 is

solved optimally in Step 2. Therefore, taking also into account Equation 3.4

we have that:

OPTc = SOLc ≤ SOL . (3.5)

Let S = {Pc(i) : 1 ≤ i ≤ k}, and SM be the set of Pc(i)’s that are matched

by M . Similarly, let Pe,M be the paths in Pe that are matched by M . Finally,

let K be the set of the k most profitable paths of Pe. We will now show that

OPTe = w(K) ≤ SOL . (3.6)

For the sake of analysis we will examine a solution SOL′ that Match­

and­Replace would have computed if it had chosen a matching M ′ of a

subgraph H ′ of H in Step 5. The bipartite graph H ′ has the same node set

and the same edge weight function as H, but only a subset of the edges

of H. More specifically, for every pair (Pc(i), q): the edge (Pc(i), q) is in H ′ if

and only if w(q)−w (Pc(i)) > 0 and q ∈ K. Let M ′ be a maximum matching

in H ′, and letSM ′ andPe,M ′ be defined analogously for M ′ as for M . Similarly

to Equation 3.4,

SOL′ = SOLc + h(M ′) . (3.7)

Note that SOLc = w(S). We have:

h(M ′) = w
(Pe,M ′

) −
∑

(P(i),q)∈M ′
w (Pc(i)

q) (3.8)

= w
(Pe,M ′

) −
∑

(Pc(i),q)∈M ′
(w (Pc(i)) −w (Pc(i)

¬q)) (3.9)

= w
(Pe,M ′

) −w (SM ′) +
∑

(Pc(i),q)∈M ′
w (Pc(i)

¬q) . (3.10)

Equation 3.7 may then be rewritten as follows:

SOL′ = w (S \ SM ′) +w
(Pe,M ′

)

+

∑

(Pc(i),q)∈M ′
w (Pc(i)

¬q) . (3.11)
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We observe that Pe,M ′ ⊆ K and therefore w
(Pe,M ′

)

+w
(

K \ Pe,M ′
)

= w(K), so

the last sum can be expanded in the following way:

SOL′ = w (S \ SM ′) +w(K) −w
(

K \ Pe,M ′
)

+

∑

(Pc(i),q)∈M ′
w (Pc(i)

¬q) . (3.12)

Observe also that for any Pc(i) < SM ′ and q < Pe,M ′ , there must be no

edge between them in H ′, hence w (Pc(i)) ≥ w(q). Moreover, w (S \ SM ′)
and w

(

K \ Pe,M ′
)

are sums with the same number of terms because |K | =
|S| = k and |SM ′ | =

∣

∣

∣Pe,M ′
∣

∣

∣. These observations imply that w (S \ SM ′) −
w

(

K \ Pe,M

) ≥ 0, therefore Equation 3.12 yields:

SOL′ ≥ w(K) . (3.13)

Since H ′ is a subgraph of H, M ′ is a matching also for H, although

probably not a maximum­weight one. Therefore, h(M) ≥ h(M ′), which

implies, from Equations 3.4 and 3.7, that SOL ≥ SOL′. Combining this

last inequality with Equation 3.13, we obtain Equation 3.6.

By Equations 3.5 and 3.6, SOL is an upper bound on both OPTe and

OPTc, which together with Equation 3.3 gives:

SOL≥ OPT
2

. (3.14)

Example 3.3 (Tight example for the approximation ratio of Match­and­Re­

place). Consider the MaxProfit­PC instance illustrated in Figure 3.1. There

is only one available color and three paths p1, p2, and p3. Paths p1 and p3

are non­overlapping, while p2 overlaps with both p1 and p3. The profits of

the paths are: w(p1) = w(p3) = α and w(p2) = α +1, where α is an arbitrary

value. Assuming that edge e, as shown in Figure 3.1, is picked as sepa­

ration edge in Step 1, it is straightforward to verify that Match­and­Replace

will color path p2 with the only available color, while the optimal solution

would be to color paths p1 and p3. Therefore, the profit of the solution re­

turned by the algorithm can be as bad as a fraction α+1

2α
of the optimal, which

approaches 1

2
as α goes to infinity.

Time complexity of Match-and-Replace The most time­consuming part of

the algorithm is the maximum­weight matching computation of Step 5. The

compatibility graph H has O (k +m) nodes and O (km) edges; recall that m

is the number of paths and k is the number of available colors in the orig­

inal instance. Therefore, Step 5 takes O (

km(k +m) + (k +m)2 log(k +m)
)

time. Under the reasonable assumption that k ≪ m, the time complexity

of the algorithm becomes O (

m2(k + logm)
)

.
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p1

p2

p3

α

α + 1

eα

Figure 3.1: An instance of MaxProfit­PC in which the Match­and­Replace algo­

rithm performs as badly as possible. There is only one available color and three

paths, p1, p2, and p3 with profits α, α + 1, and α respectively. Assuming that

Match­and­Replace picks edge e as separation edge in Step 1, it will color path p2

for a profit of α + 1, while the optimal solution would be to color paths p1 and p3

for a profit of 2α. The value of α is arbitrary.

3.3 Other Approaches for Approximating MaxProfit-PC

In this section we present three more algorithms for MaxProfit­PC, which

we call Best­Choice, Iterative, and MPLU­Greedy.

3.3.1 Best Choice

A second, more naive application of the separation edge technique involves

picking the best of the following two solutions:

1. the solution obtained by coloring optimally the paths that do not use

the separation edge, and

2. using one color for each of the k most profitable paths that use the

separation edge.

We call this algorithm Best­Choice and a detailed description is given in

Algorithm 6. We prove that this algorithm also achieves an approximation

ratio of 1

2
for MaxProfit­PC in rings.

Theorem 3.4. Best­Choice is an 1

2
­approximation algorithm for MaxProfit­

PC in rings.
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Algorithm 6 Best­Choice

Input: an instance 〈G,P, w, k〉 of MaxProfit­PC, where G is a ring

1: Pick an arbitrary separation edge e of the ring; let Pe be the set of paths

that use edge e and Pc = P \ Pe.

2: Color the instance 〈G − e,Pc, w, k〉 optimally, using the Carlisle­Lloyd

algorithm for MaxProfit­PC in chains. Let k′ be the number of colors

used in this partial coloring. Use the remaining colors, if any, for the

k − k′ most profitable paths in Pe. Let PA be the set of colored paths.

3: Let PB be the set of the k most profitable paths in Pe.

4: if w(PA) > w(PB) then return the coloring obtained in Step 2 for PA.

5: else return the coloring that uses a different color for each path in PB.

6: end if

Proof. Let OPT be the value of any optimal solution of the ring instance,

OPTc be the value of any optimal solution of the instance constrained to

path set Pc and OPTe be the value of any optimal solution of the instance

constrained to path set Pe. Since Pc and Pe form a partition of P,

OPT≤ OPTc +OPTe . (3.15)

By Step 2 of the algorithm, w (PA) ≥ OPTc. Moreover, by Step 3 of the

algorithm, w (PB) = OPTe. Given the fact that SOL= max{w (PA) , w (PB)},
it follows that:

OPTc ≤ w (PA) ≤ SOL , (3.16)

and

OPTe = w (PB) ≤ SOL . (3.17)

Combining Equations 3.15, 3.16, and 3.17, we get that

SOL≥ OPT
2

. (3.18)

Furthermore, observe that the MaxProfit­PC instance illustrated in

Figure 3.1 also serves as a tight example for the Best­Choice algorithm.

Time complexity of Best-Choice Step 2 requires O (

km logm
)

time. The

selection of the k most profitable paths in Step 3 can be done in O (m)
time, by selecting the path with the (|Pe| − k)­th smallest profit using a

known linear time selection algorithm which at the same time performs a

partition with the selected element as pivot (see e.g. [25, p. 189]). Therefore,

the overall time complexity of the algorithm is dominated by Step 2 and

is O (

km logm
)

.
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Algorithm 7 Iterative

Input: an instance 〈G,P, w, k〉 of MaxProfit­PC, where G is a ring

1: for all colors αi do

2: Si := ∅
3: for all paths p ∈ P do

4: Sp := {p}
5: Find a maximum­profit set of edge­disjoint paths that do not

overlap with p by running the Carlisle­Lloyd algorithm for MaxProfit­

PC on the instance 〈G − p,P¬p, w, 1〉, where G − p is the graph obtained

by removing all edges of path p from G; insert these paths in Sp.

6: if w
(Sp

)

> w (Si) then

7: Si := Sp

8: end if

9: end for

10: Color all requests in Si with color αi.

11: P := P \ Si

12: end for

3.3.2 Iterative

In this section we present an algorithm that iteratively colors a maximum­

profit subset of non­overlapping requests. This algorithm is based on a

known maximum coverage technique that also applies to coloring problems

(see e.g. Wan and Liu [75], Erlebach et al. [35], or Awerbuch et al. [6]). We

will refer to this algorithm as Iterative. Iterative works as follows: during

each iteration i it computes for each path p a maximum­profit subset Sp of

non­overlapping paths that contains p. Finally, the set Sp with maximum

profit is colored with color αi and is removed from P.

In order to compute Sp it suffices to solve MaxProfit­PC in the following

instance: 〈G − p,P¬p, w, 1〉, where G − p is the graph obtained by removing

all edges of path p from G. Observe that this instance is a chain instance

and can be solved optimally with the Carlisle­Lloyd algorithm. The solution

of this instance, together with path p, constitutes the set Sp. We give a

detailed description of the algorithm in Algorithm 7.

It has been observed by Erlebach et al. [35] that a straightforward adap­

tation of the technique of Awerbuch et al. [6] can be used to prove that the

Iterative algorithm achieves an approximation ratio of 1 − 1

e
for the cardi­

nality version of MaxProfit­PC, where all requests have profit equal to 1.

It turns out that the analysis goes through for the case of non­uniform

profits as well. We present the proof below for the sake of completeness.
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Theorem 3.5. Iterative is an
(

1 − 1

e

)

­approximation algorithm for MaxProfit­

PC in rings.

Proof. Let 〈G,P, w, k〉 be an input to the Iterative algorithm, and ti = w(Si),
1 ≤ i ≤ k, be the total profit of the paths colored with color αi during the

i­th iteration of the algorithm. Let OPT be the total profit of an optimal

solution.

We first prove that, for any j : 1 ≤ j ≤ k:

j
∑

i=1

ti ≥ OPT·
(

1 −
(

1 − 1

k

)j
)

. (3.19)

Equation 3.19 certainly holds for j = 1: there is at least one set of non­

overlapping edge­disjoint paths with total profit at least OPT
k

, and the Itera­

tive algorithm finds the largest such set during the first iteration. Assum­

ing that Equation 3.19 holds for j = s − 1, we get:

s
∑

i=1

ti =

s−1
∑

i=1

ti + ts (3.20)

≥
s−1
∑

i=1

ti +
OPT−∑s−1

i=1 ti

k
(3.21)

=

(

1 − 1

k

)

·
s−1
∑

i=1

ti +
OPT

k
(3.22)

≥
(

1 − 1

k

)

·OPT·
(

1 −
(

1 − 1

k

)s−1
)

+
OPT

k
(3.23)

= OPT·
(

1 −
(

1 − 1

k

)s
)

. (3.24)

Therefore, Equation 3.19 holds for all j between 1 and k. By setting

j = k in Equation 3.19 we get:

k
∑

i=1

ti ≥ OPT·
(

1 −
(

1 − 1

k

)k
)

≥
(

1 − 1

e

)

·OPT , (3.25)

that is, the solution returned by the Iterative algorithm is at least a fraction

of 1 − 1

e
≈ 0.632 of the optimal.

Time complexity of Iterative The time complexity of Step 5 of the algorithm

is O (

km logm
)

, and in the worst case at most km iterations of the in­

ner loop are needed. Therefore, the total time complexity of Iterative is

O (

k2m2 logm
)

.
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Algorithm 8 MPLU­Greedy

Input: an instance 〈G,P, w, k〉 of MaxProfit­PC

1: Sort the paths p ∈ P in order of non­increasing ratio
w(p)
|p| .

2: for all paths p ∈ P (in the order of Step 1) do

3: If there is some color αi that can be assigned to p, color path p with

color αi.

4: end for

3.3.3 Greedy

We present a natural greedy heuristic for MaxProfit­PC. The key idea is

that the more edges a path uses, the more likely it is to block other, possibly

more profitable paths from being added to the solution. On the other hand,

a path may be so profitable that it is worth picking it in the solution, despite

its length. Translating these observations into an algorithm, we end up

with the following approach: consider the paths in non­increasing order of

the ratio of their profit over their length; if there is an available color for

the current path, color it—otherwise drop this path. We call this algorithm

Most Profit per Length Unit Greedy, for short MPLU­Greedy (Algorithm 8). It

is very fast and easy to implement but, as we show below, there is no

constant ρ, 0 < ρ ≤ 1, such that the profit of the solution returned by the

algorithm is guaranteed to be at least a fraction ρ of the optimal. Note that

the algorithm works in any network topology, not just in rings.

Example 3.6 (Non­constant approximation ratio of MPLU­Greedy in rings).

Consider the instance of MaxProfit­PC that is illustrated in Figure 3.2.

There is only one available color, and two overlapping paths, p1 and p2,

with w(p1) = ℓ − 1 and w(p2) = 1. The length of the paths p1 and p2 is ℓ

and 1, respectively. The MPLU­Greedy algorithm will first consider path p2

and color it with the only available color. This will result in the path p1

remaining uncolored. The total profit of this solution is 1. On the other

hand, the optimal solution would use the only available color to color path p1

and obtain a profit of ℓ − 1. This implies that the solution returned by the

algorithm can be as bad as a fraction 1

ℓ−1
of the optimal. Given that ℓ can be

arbitrarily large, the algorithm can be made to perform arbitrarily badly.

Time complexity of MPLU-Greedy A simple implementation of the algorithm

requires O (nmk) time.
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p2

1

1

ℓ−1

ℓ

p1

Figure 3.2: An instance of MaxProfit­PC in which the MPLU­Greedy algorithm

performs badly. There is only one available color and two paths, p1 and p2 with

profits ℓ−1 and 1 respectively, and length ℓ and 1 respectively. The MPLU­Greedy

algorithm will color path p2 for a profit of 1, while the optimal solution would be

to color path p1 for a profit of ℓ − 1. The value of ℓ is arbitrary.

3.4 Numerical Results

3.4.1 Experimental Setup

We implemented all algorithms in C++, making use of the LEDATM class

library of efficient data types and algorithms. All source files were compiled

with the BorlandTM C++ 5.5 for Win32 compiler, set to generate fastest

possible code. We relied on LEDA routines and classes for graph, array,

list and priority queue operations including sorting and finding maximum­

weight matchings in bipartite graphs. The experiments were run on a

PentiumTM 4 clocked at 3.2GHz with 512MB of memory.

Instance packs An instance pack is a set of 50 randomly generated in­

stances 〈G,P, w, k〉 of MaxProfit­PC, where G is a ring, specified by the

following parameters:

• the number n of nodes in the ring,

• the number m of requests in the set P,

• the number k of available colors,

• an upper bound W on the profit of the requests, and
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• the manner in which paths are generated, specified either as uniform

or as gaussian:µ:σ.

Each instance in the instance pack is defined on a ring with n nodes. There

are k available colors. The path set P of the instance has cardinality m,

and the profit of each path in P is selected uniformly at random from the

set {1, . . . , W }. The path itself is generated in one of two ways:

• If the mode of generation is uniform, the two endpoints of the path are

selected independently uniformly at random from the node set of the

ring. The edges actually used by the path are the edges that connect

the first endpoint to the second one, in the clockwise direction.

• If the mode of generation is gaussian:µ:σ, then the first endpoint of

the path is selected uniformly at random from the node set of the ring.

Subsequently, the length of the path is selected at random, following

the normal distribution with mean µ and standard deviation σ. The

path spans as many edges as its length in the clockwise direction,

starting from the first endpoint.

For each instance pack that we generated, we executed each algorithm

on all instances of the pack and measured the average execution time and

the average profit of satisfied requests. Furthermore, for each of these

values we calculated a 95 percent confidence interval which is shown on

the plots.

In each one of the figures discussed below (Figures 3.3, 3.4, 3.5, 3.6,

and 3.7), we present the results corresponding to several instance packs.

In each of these instance packs, we keep four of the above parameters fixed

and let one of them vary in order to exhibit the effect of this parameter on

the execution time and on the profit of satisfied requests.

Note that execution times were measured using the timer class of the

LEDA package, which does not provide routines for measuring exact pro­

cessor time. However, we ran the experiments on a dedicated machine and

kept background processes at a minimum.

Computing an upper bound on OPT In order to obtain an estimation of the

performance of our algorithms we use the following upper bound on the

value of an optimal solution:

OPT≤ min
e∈E
{OPTe +OPTc} , (3.26)
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where OPTe is the total profit of the k most profitable paths using edge e,

and OPTc is the optimal solution of the MaxProfit­PC instance that con­

tains only the paths that do not use edge e. The latter is computed using

the Carlisle­Lloyd algorithm, as discussed earlier.

3.4.2 Discussion

A first observation is that all algorithms perform considerably better than

their theoretical guarantee. Indeed, we have included a curve showing

the computed upper bound (UB) in our figures and it turns out that all

algorithms manage to satisfy a good fraction of an optimal solution, often

much better than the theoretically predicted.

In the experiments of Figure 3.3, we compare all algorithms for variable

number of nodes ranging from 4 to 16 (typical values for SONET rings),

with the number of requests being ten times the number of nodes. The

number of available wavelengths is fixed to 8. The endpoints of each re­

quest are chosen uniformly at random. The profit of each request is chosen

uniformly at random from {1, . . . , 10}. We observe that Iterative achieves

the best performance, closely followed by Match­and­Replace which is a

remarkably faster algorithm. MPLU­Greedy performs quite well, although

there is no constant bound on its approximation ratio. Best­Choice has no

particular merits, but serves as a good basis in order to exhibit the improve­

ment achieved by Match­and­Replace. In Figure 3.4, experiments with a

wider variance of profits than the ones in Figure 3.3, namely between 1

and 100, result in a similar ranking of the algorithms in terms of achieved

profit. Observe that, in some cases in Figure 3.4, Match­and­Replace even

outperforms the Iterative algorithm (for example in the instance pack with

m = 350).

In the experiments of Figure 3.5 the load is comparable to the number

of wavelengths and this explains the good performance of all algorithms

(except Best­Choice). In particular, the average load is around 20 for ev­

ery 100 requests and thus there are enough wavelengths to color almost

all paths, especially for number of requests up to 300.

In the experiments of Figure 3.6 only one endpoint of each request is

chosen uniformly at random and the other endpoint is determined in such

a way so that the length of the request follows the normal distribution with

mean 8 and standard deviation 1. In these experiments MPLU­Greedy

appears competent and Iterative displays noticeable superiority. This be­

havior can be explained if we take into account that the length of paths

is about half the cycle and thus with high probability each color can be

used for at most two paths. This fact favors Iterative, which has fewer



 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 4  6  8  10  12  14  16

pr
of

it

# of nodes

Match and Replace
Best Choice

Iterative
MPLU-Greedy

UB

Figure 3.3: Instance pack parameters: n ranges from 4 to 16, m = 10n, k = 8,

W = 10, endpoints: uniform.
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k = 80, W = 100, endpoints: uniform.
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Figure 3.5: Instance pack parameters: n = 100, m ranges from 200 to 500,

k = 80, W = 10, endpoints: gaussian:20:2.

limitations on the path combinations it tries.

Figure 3.7 illustrates a comparison of the running time of the algo­

rithms. We observe that Iterative is thousands of times slower than Match­

and­Replace, which has comparable performance in terms of achieved

profit. Best­Choice is somewhat faster than Match­and­Replace. MPLU­

Greedy is several times faster than Best­Choice.

3.5 Conclusions

To evaluate the experimental results we take into consideration the ob­

tained profit as well as the time performance. Taking into account both

measures we first remark that Match­and­Replace should be the algo­

rithm of choice for practical purposes, since it achieves one of the best

performances with respect to the obtained profit, and at the same time

its time requirements are reasonably low. In most cases Iterative pro­

duces marginally better solutions than Match­and­Replace, but its time

consumption could be prohibitive. On the other hand, if time efficiency is

crucial it would also make sense to consider MPLU­Greedy, which is a very

fast algorithm with acceptable performance. Taking into account both per­
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Table 3.1: An empirical ranking of the algorithms for problem MaxProfit­PC with

respect to their performance in the experiments in terms of attained profit.

Algorithm Attained profit Approximation ratio

Iterative ⋆⋆⋆⋆ 0.632

Match­and­Replace ⋆⋆⋆⋆ 0.5

MPLU­Greedy ⋆⋆⋆ non­constant

Best­Choice ⋆ 0.5

Table 3.2: An empirical ranking of the algorithms for problem MaxProfit­PC with

respect to their performance in the experiments in terms of time efficiency.

Algorithm Time efficiency Time complexity

MPLU­Greedy ⋆⋆⋆⋆ O (nmk)
Match­and­Replace ⋆⋆⋆ O (

m2(k + logm)
)

Best­Choice ⋆⋆⋆ O (

km logm
)

Iterative ⋆ O (

k2m2 logm
)

formance with respect to profit and time efficiency, as they were assessed

from the experimental results, we rank all four algorithms in Tables 3.1

and 3.2. We also include the theoretical bounds on the approximation

ratio and time complexity for reference.





Chapter 4

Non-cooperative Wavelength

Assignment in Multifiber Optical

Networks

4.1 Introduction

The need for efficient access to optical bandwidth has given rise to the

study of several optimization problems in the past years. One of the most

well­studied among them is the problem of assigning a path and a color

(wavelength) to each communication request in such a way that paths of

the same color are edge­disjoint and the number of colors used is mini­

mized. Nonetheless, it has become clear that the number of wavelengths

in commercially available fibers is rather limited—and will probably remain

such in the foreseeable future. Fortunately, the use of multiple fibers has

come to the rescue.

In a multifiber optical network, a physical link may be implemented with

more than one optical fibers deployed in parallel between the endpoins of

the link. Naturally, this boosts the available bandwidth. More importantly,

it allows for several requests using the same wavelength to be routed on the

same physical link, provided that each one uses a different fiber. However,

fibers are not unlimited either, therefore it makes sense to minimize their

usage. This is particularly interesting from the customer’s point of view,

for example in situations where one can hire a number of parallel fibers

for a certain period and the cost depends on that number.

To this end, several optimization problems have been defined and stud­

ied, the objective being to minimize either the maximum fiber multiplicity

per edge [4, 3, 2] or the sum of these maximum multiplicities over all edges

71
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of the graph [62, 35, 76]; in another scenario the allowed fiber multiplicity

per edge is given and the goal is to minimize the number of wavelengths

needed [53, 49, 35].

In this chapter we consider a non­cooperative model, where each re­

quest is issued by a user who tries to optimize her own fiber usage by se­

lecting the most appropriate wavelength, taking into account the choices

of other users. This model is mainly motivated by the fact that centralized

control in large scale networks may be either infeasible or impractical. We

assume that each user is charged according to the maximum fiber mul­

tiplicity that the user’s choice incurs. More specifically, a user will be

charged according to the maximum number of paths that share an edge

with her and use the same wavelength. We consider as social cost the max­

imum fiber multiplicity that appears on any edge of the network. Minimiz­

ing this quantity is particularly important in cases where fibers are hired

or sold as a whole, hence the maximum number of fibers needed on an

edge determines the total cost; further motivation can be found in papers

that address the corresponding optimization problem (see e.g. [4, 3, 2]).

Here we focus on situations where routing is unique (acyclic topologies)

or pre­determined—as happens in many practical settings, for example in

cases where there are specific routing constraints such as a requirement

to use lightpaths that have been set in advance, or shortest­path routing.

We formulate the above model by defining the class of Selfish Path

MultiColoring (S­PMC) games: a game is defined in terms of a graph, a

set of paths, and the number of colors k. Each player controls a path in

the graph and has to choose a color for that path from the set of available

colors W = {α1, . . . , αk}. A player is charged according to the maximum

multiplicity of her color along her path. We consider as social cost the

maximum color multiplicity per edge, i.e., the maximum number of paths

of same color that use an edge.

It is worth mentioning that path multicoloring problems can be used

to model situations that arise in various practical settings not necessar­

ily limited to optical networking. For example, our model may also find

applications in communication networks where packets are transmitted

using time­division multiplexing. In this case, colors represent timeslots

and a color’s multiplicity determines the number of frames it takes for each

user of the corresponding timeslot to transmit a single packet. Therefore,

the social cost of our model is proportional to the total number of frames

needed for all users to complete their transmissions, assuming they all

possess the same number of packets.

In the rest of this chapter, we first give an overview of related work

and then move on to present our results on Selfish Path MultiColoring
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games [8]. We show an upper bound on the convergence rate of Nash

dynamics for S­PMC games, and observe that the price of stability is always

equal to 1. We also show how to efficiently compute a Nash equilibrium of

minimum social cost for S­PMC games in rooted trees, i.e. games in which

each communication request lies entirely on a simple path from some fixed

root node to a leaf. For S­PMC games in stars, we prove that a known

approximation algorithm for a related optimization problem actually gives

an 1

2
­approximate Nash equilibrium.

For general graphs, we obtain two upper bounds on the price of anar­

chy: the first, which is not hard to show, is equal to the number of available

colors. The second, which requires more involved arguments, is equal to

the length of a shortest path with maximum disutility in any worst­case

Nash equilibrium. For both bounds we provide matching lower bounds. In

fact, we prove that these bounds hold even in trees.

Then, we move on to specific network topologies and show that for S­

PMC games in stars the price of anarchy is equal to 2. We also provide

constant bounds on the price of anarchy for a broad class of S­PMC games

in chains and rings, namely for all games with L = Ω(k2), where k is the

number of available colors and L is the maximum load among all edges of

the network. On the other hand, for any ε > 0 we exhibit a class of S­PMC

games in chains (and rings) with L = Θ(k2−ε) for which the price of anarchy

is unbounded.

In order to show our upper bounds, we demonstrate path patterns that

must be present in any Nash equilibrium, while for the lower bounds we

employ recursive construction techniques.

4.2 Related Work

Arguably, the most important notion in the theory of non­cooperative

games is the Nash equilibrium (NE) [60], a stable state of the game in

which no player has incentive to change strategy unilaterally. A fundamen­

tal question in this theory concerns the existence of pure Nash equilibria

(PNE). For various games [37, 67, 56, 74, 58, 36] it has been shown that

a pure Nash equilibrium exists or can be found with the use of potential

functions. A standard measure of the worst­case quality of Nash equilib­

ria relative to optimal solutions is the price of anarchy (PoA) [46], which

has been extensively studied for load balancing games [46, 54] and other

problems such as routing and facility location [37, 68]. A second known

measure related to Nash equilibria is the price of stability (PoS), defined

in [5].
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Selfish Path MultiColoring games are closely related to a variation of

congestion games [19, 13] where a player’s cost is determined by her max­

imum latency instead of the usual cost which is the sum of her latencies.

Next, we briefly explain the relation of those models to ours.

In [19] the authors study atomic routing games on networks, where

each player chooses a path to route her traffic from an origin to a desti­

nation node, with the objective of minimizing the maximum congestion on

any edge of her path. They show that these games always possess at least

one optimal pure Nash equilibrium (hence the price of stability is 1) and

that the price of anarchy of the game is determined by topological prop­

erties of the network; in particular they show that the price of anarchy

is upper­bounded by the length of the longest path in the player strat­

egy sets and lower­bounded by the length of the longest cycle. Some of

our results extend to their model, since our model mimics traffic routing

in the following sense: we may consider a multigraph, where we replace

each edge with k parallel edges, one for each color. Each player’s strategy

set then consists of k different source­destination paths, corresponding to

the k available colors in the original model. A further generalization is

the model of Banner and Orda [13], where they introduce the notion of

bottleneck games. In this model they allow arbitrary latency functions on

the edges and consider both the case of splittable and unsplittable flows.

They show existence, convergence and non­uniqueness of equilibria and

they prove that the price of anarchy for these games is unbounded. Both

models are more general than ours; however our model fits better into the

framework of all­optical networks for which we manage to provide, among

others, smaller upper bounds on the price of anarchy compared to the

ones obtained by [19, 13], as well as a better convergence rate to Nash

equilibria.

Selfish path coloring in single fiber all­optical networks has been stud­

ied in [16, 15, 44, 57]. Bilò and Moscardelli [16] consider the convergence

to Nash equilibria of selfish routing and path coloring games. Later, Bilò

et al. [15] considered different information levels of local knowledge that

players may have for computing their payments in the same games and

give bounds for the price of anrchy in chains, rings and trees. The exis­

tence of Nash equilibria and the complexity of recognizing and computing

a Nash equilibrium for selfish routing and path colorings games under

several payment functions are considered by Georgakopoulos et al. [44].

In [57] upper and lower bounds of the price of anarchy for selfish path col­

oring with and without routing are presented under functions that charge

a player only according to her own strategy.
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4.3 Preliminaries

Given an undirected graph G = (V, E), a set P of simple paths defined on G,

and a set W = {α1, . . . , αk} of available colors, recall that we use the notation

L(e) for the load of edge e, i.e., the number of paths that use edge e, and

the notation L for the maximum of these loads, i.e., L = maxe∈E L(e).
Given, additionally, an assignment of a color to each path we define the

following notation:

Definition 4.1. 1. µ(e, c) will denote the multiplicity of color c on edge e,

i.e. the number of paths that use edge e and are colored with color c.

2. µe will denote the maximum multiplicity of any color on edge e:

µe = max
c∈W

µ(e, c) . (4.1)

3. µmax will denote the maximum multiplicity of any color over all edges:

µmax = max
e∈E

µe . (4.2)

4. µ(p, c) will denote the maximum multiplicity of color c over the edges

of path p:

µ(p, c) = max
e∈p

µ(e, c) . (4.3)

It will be clear from the context which specific coloring we are referring

to when we use the above notation.

The minimum µmax that can be attained by some coloring of the paths

in P will be denoted by µOPT, i.e:

µOPT = min
~c

µmax , (4.4)

where ~c ranges over all possible colorings. We note immediately the follow­

ing:

Fact 4.2. No coloring can achieve a µmax that is smaller than
⌈

L

k

⌉

. Thus,

µOPT ≥
⌈

L

k

⌉

. (4.5)
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4.3.1 Game-Theoretic Model

We now proceed to define the class of selfish path multicoloring games and

subclasses thereof.

Definition 4.3 (Selfish path multicoloring games). A selfish path multicol­

oring game is the following strategic game defined in terms of an undirected

graph G, a set P of simple paths defined on G, and an integer k > 0:

• Players: there is one player for each path in P. For simplicity, we will

identify a player i with the corresponding path pi.

• Strategies: a strategy for player i is a color ci chosen from the set

W = {α1, . . . , αk} of available colors. We say that color ci is assigned

to path pi or that path pi is colored with color ci . All players share

the common set of available strategies W . The strategies chosen by

all players will be collectively described by a vector ~c =
(

c1, . . . , c|P|
)

.

Vector ~c will be called a strategy profile.

• Disutility: given a strategy profile ~c = (c1, . . . , c|P|), the disutility fi :
W |P| → N of each player i is defined as follows:

fi(~c) = µ(pi , ci) . (4.6)

We denote this game by 〈〈G,P, k〉〉.

Definition 4.4. S­PMC will denote the class of all selfish path multicoloring

games 〈〈G,P, k〉〉.

We will use the notation S­PMC(G) to denote a subclass of S­PMC that

contains only games satisfying a property G. For example, Gmay constrain

the graph on which the game is defined to belong to a specific graph class,

etc.

Following the standard definition [60], we say that a strategy profile

~c = (c1, . . . , c|P|) is a pure Nash equilibrium (PNE), or simply Nash equilibrium

(NE) for our purposes, if for each player i it holds that:

fi(c1, . . . , c′i , . . . , c|P|) ≥ fi(c1, . . . , ci , . . . , c|P|) , (4.7)

for any strategy c′i ∈ W . Moreover, following the definition of [23], we say

that a strategy profile ~c = (c1, . . . , c|P|) is an ε­approximate Nash equilibrium

if for each player i it holds that:

fi(c1, . . . , c′i , . . . , c|P|) ≥ (1 − ε) · fi(c1, . . . , ci , . . . , c|P|) , (4.8)
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for any strategy c′i ∈ W . In a Nash equilibrium, no player has incentive to

change strategy unilaterally, while in an ε­approximate Nash equilibrium

a unilateral change of strategy may result in reducing the player’s cost by

no more than a factor of 1 − ε.

Definition 4.5 (Blocking edges). If ~c is a strategy profile for an S­PMC game

〈〈G,P, w〉〉 and pi ∈ P, we say that an edge e ∈ pi is an αj­blocking edge for

pi , or that it blocks αj for pi , if

µ(e, αj) ≥ fi(~c) − 1 . (4.9)

Furthermore, the µ(e, αj) paths that are colored with αj and use edge e are

called αj­blocking paths for pi.

Intuitively, an αj­blocking edge for pi ‘‘blocks’’ pi from switching to color

αj because if it did, the new disutility of path pi would be at least µ(e, αj) +
1 ≥ fi(~c), no better than its current choice. The following characterization

of the Nash equilibria of S­PMC games is immediate from the definitions:

Property 4.6 (Structural characterization of S­PMC Nash equilibria). A

strategy profile for an S­PMC game 〈〈G,P, k〉〉 is a Nash equilibrium if and

only if every path p ∈ P contains at least one αj­blocking edge for p, for every

color αj.

Definition 4.7 (Social cost). The social cost of a strategy profile ~c for an

S­PMC game is defined as follows:

sc(~c) = max
e∈E

µe = µmax . (4.10)

It is straightforward to verify that the social cost of a strategy profile

coincides with the maximum player disutility in that profile:

sc(~c) = max
e∈E

µe = max
pi∈P

fi(~c) . (4.11)

We define µ̂ to be the maximum social cost over all strategy profiles that

are Nash equilibria:

µ̂ = max
~c is NE

sc(~c) . (4.12)

Following the standard definitions [46, 5], the price of anarchy (PoA) of a

game 〈〈G,P, k〉〉 is the worst­case social cost in a Nash equilibrium divided

by µOPT, i.e.:

PoA(〈〈G,P, k〉〉) = max~c is NE sc(~c)
µOPT

=
µ̂

µOPT
. (4.13)
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The price of stability (PoS) of a game is the best­case social cost in a Nash

equilibrium divided by µOPT:

PoS(〈〈G,P, k〉〉) = min~c is NE sc(~c)
µOPT

. (4.14)

The price of anarchy (resp. stability) of a class of games S­PMC(G) is the

maximum price of anarchy (resp. stability) among all games in S­PMC(G).

4.4 Price of Stability, Existence, and Convergence to

Nash Equilibria

In this section we prove that any S­PMC game 〈〈G,P, k〉〉 has at least one

Nash equilibrium of optimal social cost. Moreover, we prove that starting

from an arbitrary strategy profile, any Nash dynamics converges to a Nash

equilibrium in at most 4|P| steps. For our purposes, the Nash dynamics is a

sequence ~c0,~c1, . . . of strategy profiles where in each profile ~ci+1 exactly one

player has a different strategy compared to ~ci , and that player has strictly

improved her disutility compared to her disutility in ~ci. In other words,

the Nash dynamics is a sequence of cost­improving moves of the players in

which no particular order of play or fairness criteria is assumed a priori.

For any strategy profile ~c, we define a disutility vector DDD(~c) as follows:

DDD(~c) = (dL(~c), . . . , d1(~c)) , (4.15)

where di(~c) stands for the number of players whose disutility is exactly i

(note that the disutility of any player cannot be 0 and cannot be greater

than L). We use lexicographic­order arguments similar to those in [19, 13]

to show that starting from an arbitrary strategy profile any Nash dynamics

converges to a Nash equilibrium of smaller or equal social cost.

Theorem 4.8. For any game 〈〈G,P, k〉〉 in S­PMC:

1. the price of stability is 1, and

2. any Nash dynamics converges to a Nash equilibrium in at most 4|P|

steps.

Proof. Let ≺ denote the standard lexicographic ordering between vectors of

equal size. If ~c is a strategy profile for 〈〈G,P, k〉〉 that is not a Nash equi­

librium and ~c′ is the strategy profile resulting from a profitable deviation

of some player i, we show that DDD (~c′) ≺ DDD (~c) and hence sc(~c′) ≤ sc(~c). This
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implies that any Nash dynamics starting from a minimum­cost strategy

profile converges to a Nash equilibrium of the same social cost, thus the

price of stability is 1.

Since player i profited by deviating, her disutility in the new strategy

profile ~c′ is reduced by at least 1. Some of the players that overlap with pi

and are colored with ci may also have their disutilities reduced by exactly 1.

The original disutility of any such player pj must be fj(~c) = fi(~c). The

deviation of player i may result in an increase by exactly 1 of the disutility

of some players who overlap with pi and are colored with c′i . For any player

pk whose disutility is increased, fk(~c) ≤ fi(~c) − 2 otherwise pi would be

blocked from switching to pk ’s color. The disutilities of all other players

remain the same. It is clear now that all players whose disutility changed

have a new disutility smaller than fi(~c). Therefore DDD(~c′) ≺ DDD(~c).
Regarding the rate of convergence, observe that for any strategy profile ~c

the sum of the components of the corresponding disutility vector DDD(~c) is:

L
∑

i=1

di(~c) = |P| , (4.16)

independent of ~c. So, the number of distinct disutility vectors is at most

equal to the number of distinct ways in which |P| indistinguishable balls

can be thrown in L bins. This number is known to be

(

|P| + L − 1

|P|

)

≤ 2|P|+L−1 < 4|P| , (4.17)

because L ≤ |P|. The convergence of any Nash dynamics in at most this

many steps follows immediately.

4.5 Computing Optimal and Approximate Equilibria

Due to Theorem 4.8, computing a Nash equilibrium of minimum social cost

is at least as hard as the corresponding optimization problem in which

one is given a graph G, a set of simple path P defined on G, and the

number of available colors k and is asked to color all paths in P so that

the maximum fiber multiplicity µmax is minimized. As noticed in [62], this

problem is NP­hard in general graphs, in fact even in rings and stars.

Therefore, it is also NP­hard to compute an optimal Nash equilibrium even

in the case of rings and stars. However, we show that there exists an

efficient algorithm that computes optimal Nash equilibria for a subclass of

S­PMC(Tree). Furthermore, we show that we can use a known algorithm
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Algorithm 9 Computing pure Nash equilibria for the class of S­

PMC(Rooted­Tree) games.

Input: an S­PMC(Rooted­Tree) game 〈〈G,P, k〉〉
1: Find a node r such that each path in P lies on some path from r to a

leaf.

2: for all edges e ∈ E in order of non­decreasing distance from r, breaking

ties arbitrarily do

3: for all uncolored paths p that contain edge e do

4: Pick a color c such that µ(e, c) is minimum in the current color­

ing, breaking ties arbitrarily.

5: Color p with color c.

6: end for

7: end for

for Path MultiColoring in stars to compute approximate Nash equilibria

for S­PMC(Star) games.

Definition 4.9. We define S­PMC(Rooted­Tree) to be the subclass of S­

PMC that contains games 〈〈G,P, k〉〉 with the following property:

‘‘G is a tree and there is a node r such that each path in P lies

entirely on some simple path from r to a leaf.’’

A similar class of graphs has been defined and studied as an intersec­

tion model for ‘‘rooted directed edge path graphs’’ in [59].

We will say that a path in a tree rooted at r starts on edge e, if e is the

edge of the path that lies closest to r. Algorithm 9 is a polynomial­time

algorithm that computes optimal Nash equilibria for S­PMC(Rooted­Tree)

games. We proceed to prove its correctness.

Lemma 4.10. Given an S­PMC(Rooted­Tree) game as input, Algorithm 9

computes a pure Nash equilibrium.

Proof. Let 〈〈G,P, k〉〉 be the input game, where G = (V, E) is a tree, and r be

the root of the tree. Also, let e1, . . . , e|E| be the order in which Algorithm 9

considers the edges of E. We will prove that the outer loop of Algorithm 9

maintains the following invariant:

‘‘after the j­th iteration, all those paths in P that have been

colored are in Nash equilibrium.’’

In the rest of the proof, we will denote by µj(e, c) the multiplicity of color c

on edge e after the j­th iteration of the outer loop of Algorithm 9. Likewise,
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we will denote by µj(p, c) the maximum multiplicity of color c over all edges

of path p after the j­th iteration, i.e.,

µj(p, c) = max
e∈p

µj(e, c) . (4.18)

For j = 1, the multiplicity of any color on edge e1 is either
⌊

L(e1)
k

⌋

or
⌈

L(e1)
k

⌉

.

These numbers differ by at most 1, so the paths that start on edge e1 are

in Nash equilibrium after the first iteration.

For j > 1, assume that the invariant holds after the (j − 1)­st iteration.

Note that all paths not using ej are not affected by the j­th iteration. We

shall now prove that no path that uses edge ej has incentive to change

color after the j­th iteration.

First, let p be a path that had not been considered before, i.e., p starts

on edge ej. Let αi be its color. Consider now the path, say p′, that was last

colored with αi during the j­th iteration. At the moment p′ was colored, αi

must have been a minimum multiplicity color, therefore ej is an α­blocking

edge for p for all α , αi.

Now, let p be a path that uses edge ej and is already colored at the

beginning of the j­th iteration with color αi . We distinguish between two

cases:

• µj(p, αi) = µj−1(p, αi): since the paths starting on edges e1, . . . , ej−1

were in Nash equilibrium after the (j−1)­st iteration, for each color α ,

αi there was an α­blocking edge along path p. These edges are still

α­blocking for p, because the maximum multiplicity of αi along p has

not changed. Therefore, p has no incentive to change color.

• µj(p, αi) > µj−1(p, αi): this increase in the maximum multiplicity of αi

along p must be due to one or more new paths starting on edge ej

being colored with αi. Let p′ be the last of these paths that was

colored with αi. At the moment p′ was colored, αi must have been a

minimum­multiplicity color. Therefore, for any color α we have that

µj(ej, α) ≥ µj(ej, αi) − 1 . (4.19)

But µj(ej, αi) = µj(p, αi), because the maximum multiplicity of αi along

p has just increased at edge ej. This implies that edge ej is an α­

blocking edge for p for any α , αi , therefore p has no incentive to

change color.

Theorem 4.11. Given an S­PMC(Rooted­Tree) game as input, Algorithm 9

computes an optimal Nash equilibrium of minimum social cost.
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Proof. By Lemma 4.10, the output of the algorithm is a Nash equilibrium.

Let µj be the maximum multiplicity of any color after the j­th iteration of the

outer loop of Algorithm 9. Using the notation of the proof of Lemma 4.10,

µj = max
1≤i≤j

max
α∈W

µj(ei , α) . (4.20)

It is implicit above that for any j ≥ 1, if µj > µj−1 then µj changed due to the

coloring of certain paths on ej, hence

µj = µ(ej, αi) =

⌈

L(ej)

k

⌉

, (4.21)

for some color αi . If the maximum multiplicity µmax was last increased while

processing edge e, then by the previous remark the algorithm produces a

coloring with cost

µmax =

⌈

L(e)
k

⌉

≤
⌈

L

k

⌉

. (4.22)

Since
⌈

L

k

⌉

is a lower bound for µOPT, it turns out that

µmax = µOPT =

⌈

L

k

⌉

. (4.23)

Therefore, edge e must be a maximum­load edge and the strategy profile

output by the algorithm must have social cost equal to
⌈

L

k

⌉

.

Theorem 4.12. There is a polynomial­time algorithm that computes a 1

2
­

approximate Nash equilibrium for any S­PMC(Star) game.

Proof. Let 〈〈G,P, k〉〉 be a game in S­PMC(Star). We use the polynomial­

time approximation algorithm presented in [62] for the Path MultiColoring

problem in stars, which returns a coloring of the paths in P with the

following property: for any edge e and any color c there exist integers a, b

such that
⌈

a

k

⌉

+

⌈

b

k

⌉

− 2 ≤ µ(e, c) ≤
⌈

a

k

⌉

+

⌈

b

k

⌉

, (4.24)

and a + b = L(e). This implies that if ~c is the strategy profile returned by

the algorithm, then any player i who deviates resulting in a new strategy

profile ~c′ reduces her cost by at most 1. Therefore,

fi(~c
′) = fi(~c) − 1 =

(

1 − 1

fi(~c)

)

· fi(~c) . (4.25)

In the worst case fi(~c) = 2, hence ~c is an 1

2
­approximate Nash equilibrium.
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4.6 Tight Upper Bounds on the Price of Anarchy

In this section we provide two upper bounds on the price of anarchy of any

S­PMC game 〈〈G,P, k〉〉 and we show that both of them are tight. The first

bound is determined by a property of the network, namely the number of

available wavelengths. The second bound is more subtle, as it depends on

the length of paths with the highest disutility in worst­case Nash equilibria.

We prove that these bounds are tight even for the class S­PMC(Rooted­

Tree), and asymptotically tight for the class S­PMC(Rooted­Tree: ∆ = 3),

i.e., the subclass of S­PMC(Rooted­Tree) that contains games defined on

graphs with maximum degree 3.

Lemma 4.13. The price of anarchy of any S­PMC game 〈〈G,P, k〉〉 is at

most k.

Proof. Let ~c be a worst­case Nash equilibrium of 〈〈G,P, k〉〉, hence sc(~c) = µ̂.

Clearly, µ̂ ≤ L and since the minimum social cost over all strategy profiles

is µOPT ≥
⌈

L

k

⌉

, it turns out that µOPT ≥ µ̂

k
. This implies that

µ̂

µOPT
≤ k.

The next lemma is an arithmetical lemma that will be used in the proof

of Lemma 4.15.

Lemma 4.14. Let

f (µ̂, w, z) =
µ̂

⌈

1+⌈w
z ⌉(µ̂−1)

w

⌉ . (4.26)

It holds that f (µ̂, w, z) ≤ z, for all µ̂ ≥ 2, w ≥ 1, and z ≥ 2.

Proof. We distinguish the following four cases:

• w = κz and µ̂ = λz, for some κ ≥ 1, λ ≥ 1:

f (λz, κz, z) =
λz

⌈

1+κ(λz−1)
κz

⌉ =
λz

⌈

λ − κ−1

κz

⌉ = z . (4.27)

The last equality holds because λ − 1 < λ − κ−1

κz
≤ λ.

• w = κz and µ̂ = λz + χ, for some κ ≥ 1, λ ≥ 0, 1 ≤ χ ≤ z − 1:

f (λz + χ, κz, z) =
λz + χ

⌈

1+κ(λz+χ−1)
κz

⌉ =
λz + χ

⌈

λ +
κχ−κ+1

κz

⌉ . (4.28)

Because χ ≥ 1 and χ ≤ z − 1, we get that

f (λz + χ, κz, z) ≤ λz + z − 1
⌈

λ + κ−κ+1

κz

⌉ =
λz + z − 1

λ + 1
< z . (4.29)
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• w = κz + ϕ and µ̂ = λz, for some κ ≥ 0, 1 ≤ ϕ ≤ z − 1, λ ≥ 1:

f (λz, κz + ϕ, z) =
λz

⌈

1+(κ+1)(λz−1)
κz+ϕ

⌉ =
λz

⌈

λ +
λ(z−ϕ)
κz+ϕ

− κ

κz+ϕ

⌉ , (4.30)

where the first equality follows from the fact that
⌈

w

z

⌉

=

⌈

κ +
φ

z

⌉

= κ+1.

Because
λ(z−ϕ)
κz+ϕ

> 0 we get that

f (λz, κz + ϕ, z) ≤ λz
⌈

λ − κ

κz+ϕ

⌉ , (4.31)

and because κ

κz+ϕ
< 1 we have

⌈

λ − κ

κz+ϕ

⌉

= λ and therefore

f (λz, κz + ϕ, z) ≤ λz

λ
= z . (4.32)

• w = κz + ϕ and µ̂ = λz + χ, for some κ ≥ 0, 1 ≤ ϕ ≤ z − 1, λ ≥ 0,

1 ≤ χ ≤ z − 1:

f (λz + χ, κz + ϕ, z) =
λz + χ

⌈

1+(κ+1)(λz+χ−1)
κz+ϕ

⌉ =
λz + χ

⌈

λ +
λ(z−ϕ)+κ(χ−1)+χ

κz+ϕ

⌉ . (4.33)

Because z > ϕ, χ ≥ 1 and χ ≤ z − 1, we get that

f (λz + χ, κz + ϕ, z) ≤ λz + z − 1

λ + 1
< z . (4.34)

Lemma 4.15. For any worst­case Nash equilibrium ~c of an S­PMC game

〈〈G,P, k〉〉 and for any pi ∈ P with fi(~c) = sc(~c) = µ̂, the price of anarchy of

〈〈G,P, k〉〉 is at most equal to the length of pi.

Proof. Let ẽ be an edge of pi where the color ci chosen by pi appears with

maximum multiplicity µ̂: µ(ẽ, ci) = µ̂. Let z denote the length of path pi and

let e1, . . . , ez−1 be the edges that pi uses, apart from ẽ. For 1 ≤ j ≤ z − 1,

let xj be the number of colors that are blocked for pi on ej and let y be the

number of colors that are blocked for pi on ẽ. Since ~c is a Nash equilibrium,

it must be that

x1 + . . . + xz−1 + y ≥ k − 1 . (4.35)

If it is the case that z = 1, i.e. pi uses only edge ẽ, then ẽ must block

all colors for pi except ci. This implies that the load of edge ẽ is:

L (ẽ) ≥ µ̂ + (k − 1)(µ̂ − 1) = kµ̂ − k + 1 . (4.36)
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Therefore, the minimum social cost over all strategy profiles satisfies:

µOPT ≥
⌈

L

k

⌉

≥
⌈

L(ẽ)
k

⌉

≥
⌈

µ̂ − k − 1

k

⌉

= µ̂ . (4.37)

We conclude that the price of anarchy in this case is equal to 1.

Now, assume that z ≥ 2. We will prove that

L ≥ 1 +

⌈

k

z

⌉

(µ̂ − 1) . (4.38)

First, observe that

L(ẽ) ≥ µ̂ + y(µ̂ − 1) (4.39)

and, for 1 ≤ j ≤ z − 1,

L(ej) ≥ 1 + xj(µ̂ − 1) . (4.40)

If y ≥
⌈

k

z

⌉

− 1, then

L ≥ L(ẽ) ≥ µ̂ +

(⌈

w

z

⌉

− 1

)

(µ̂ − 1) = 1 +

⌈

w

z

⌉

(µ̂ − 1) . (4.41)

If, on the other hand, y <
⌈

k

z

⌉

− 1, then Equation 4.35 gives

x1 + . . . + xz−1 ≥ k − 1 − y ≥ k −
⌈

k

z

⌉

+ 1 . (4.42)

This implies that there is some xs such that

xs ≥
k −

⌈

k

z

⌉

+ 1

z − 1
>

k − k

z
− 1 + 1

z − 1
=

k

z
. (4.43)

Since xs is an integer, it must be that xs ≥
⌈

k

z

⌉

. Therefore,

L ≥ L(es) ≥ 1 +

⌈

k

z

⌉

(µ̂ − 1) . (4.44)

We conclude that Equation 4.38 holds in any case. So, the price of

anarchy is bounded as follows:

PoA(〈〈G,P, k〉〉) = µ̂

µOPT
≤ µ̂

⌈

L

k

⌉ ≤ µ̂
⌈

1+⌈ k
z ⌉(µ̂−1)

k

⌉ ≤ z . (4.45)

The last inequality holds by Lemma 4.14.
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As an immediate corollary of Lemma 4.15, we derive the following upper

bound on the price of anarchy:

Corollary 4.16. The price of anarchy of any S­PMC game 〈〈G,P, k〉〉 is upper­

bounded as follows:

PoA(〈〈G,P, k〉〉) ≤ min
~c:sc(~c)=µ̂

min
i:fi (~c)=µ̂

|pi | . (4.46)

Lemma 4.17. The upper bounds of Lemma 4.13 and Corollary 4.16 are

tight even for the class of S­PMC(Rooted­Tree) games.

Proof. We first define a recursive construction of an S­PMC game and a

Nash equilibrium for this game. The construction is illustrated in Fig­

ure 4.1.

For any z ≥ 1 and λ ≥ 1, let Az(λ) be the following S­PMC game with z

available colors: there are λ paths of color α1 and length z, starting at the

root node u0, which branch out into λ branches, one on each branch. Let

us call these the primary paths for Az(λ). On any of the z − 1 edges of

each such branch, one color is blocked for the primary path. The λ − 1

blocking paths of each edge branch out into an Az(λ − 1) game. They

become primary paths for this copy of Az(λ − 1). The root node for the

j­th recursive copy of Az(λ − 1) on the i­th branch is node ui,j (node ui,1 is

common for all branches). The base case of this recursive construction is

Az(0), which is a degenerate game with no paths and no available colors,

defined on a graph consisting of a single node. We have included the

explicit construction for z = λ = 3 in Figure 4.2.

Claim 4.18. For any z ≥ 1, the construction Az(z) is an S­PMC(Rooted­

Tree) game in Nash equilibrium, in which all of the following are equal to z:

the number of available colors k, the maximum load L, the maximum color

multiplicity µmax, and all path lengths.

Proof (of Claim). It is straightforward to verify that Az(z) belongs to the

class S­PMC(Rooted­Tree); the root node is the root node u0 of the first

level of the recursive construction. The game is in Nash equilibrium by

construction, since every path contains one blocking edge for every color

other than its own. The number of available colors is equal to z by defini­

tion. The maximum multiplicity µmax = z appears on the edge incident to

the root node of Az(z). The maximum load L = z appears on all the edges

of the first level of the construction. Finally, all path lengths are equal to z

by construction. The claim is proved.
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α3

αz

α1

u0

u1,3 u1,z−1u1,2

u1

λ uλ,2 uλ,3 uλ,z−1

Figure 4.1: The construction Az(λ) for the proof of Lemma 4.17. The thick lines

represent the edges of the underlying graph, and the thin lines represent the paths

defined on the graph. The color and multiplicity of each group of paths is written

next to that group. Each shaded box represents a recursive copy of Az(λ − 1).



Figure 4.2: The construction A3(3), as described in Lemma 4.17. Different

colors are shown by different line styles. Solid black lines represent the edges of

the underlying graph.
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Figure 4.3: Alternate branching in the construction of Lemma 4.17 in order to

achieve an asymptotically tight lower bound for the price of anarchy on graphs

with maximum degree 3.

By Theorem 4.11, the optimal strategy profile for Az(z) has social cost

µOPT =

⌈

L

k

⌉

= 1. Therefore, the ratio
µmax

µOPT
is equal to z for this Nash equilib­

rium, hence the price of anarchy is at least z.

Lemma 4.19. The upper bounds of Lemma 4.13 and Corollary 4.16 are

asymptotically tight even for the class of S­PMC(Rooted­Tree) games with

maximum degree 3.

Proof. The construction presented in Lemma 4.17 can be modified so that

the maximum degree of the resulting tree is 3, with only a logarithmic

increase in the length of the paths: whenever a multitude of d paths that

use the same edge spread out into d branches so that only one of them

lies on each branch, let the branching not be effected immediately, but let

instead the paths carry on for one additional edge in the direction in which

they are headed, then split them onto 2 new edges (half of the paths on

each edge), then split the paths of each edge onto 2 new edges, and so on

until each path is singled out. An example of this modification for d = 4 is

illustrated in Figure 4.3.

It is easy to see that this process results in a tree with maximum de­

gree 3 and increases the length of the paths by at most
⌈

logd
⌉

. If we take

care to add edges where needed so that all paths have the same length

and carry out this process for the whole tree, then we result in an S­

PMC(Rooted­Tree) game and a Nash equilibrium thereof with the same

properties as the construction in Lemma 4.17, except that the maximum

degree is 3 and the length of all paths is z′ = z + O (

logz
)

. It turns out,

then, that PoA≥ z = z′ − O (

logz
)

= z′ − o(z′).

We summarize the results of Lemmata 4.13, 4.15, 4.17, and 4.19 in

the following theorem:

Theorem 4.20. The price of anarchy of any S­PMC game 〈〈G,P, k〉〉 is upper­

bounded both by k and by

min
~c:sc(~c)=µ̂

min
i:fi (~c)=µ̂

|pi | . (4.47)
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These bounds are tight for the class S­PMC(Rooted­Tree) and asymptoti­

cally tight for the class S­PMC(Rooted­Tree: ∆ = 3).

Theorem 4.21. The price of anarchy of the class S­PMC(Star) is 2.

Proof. Lemma 4.15 implies an upper bound of 2 on the price of anarchy,

since the length of any simple path defined on a star cannot be larger

than 2.

For the lower bound, we can easily modify the construction that ap­

pears in Lemma 4.17 to yield a family of S­PMC(Star) games with price

of anarchy 2. More specifically, observe that in any game A2(λ) we have

only players (paths) of length 2. Such a game can be embedded in a star

with exactly the same number of edges as follows: fix an isomorphism

ϕ between the edges of the tree and the edges of the star, and for every

path p = {e, e′} defined on the tree, define a path p̃ = {ϕ(e), ϕ(e′)} of the

same color on the star. It is clear that the paths we just defined on the

star overlap with each other in exactly the same way as the original paths

overlapped on the tree. Therefore, the game on the star is in Nash equi­

librium with µmax = λ, whereas the optimal solution has maximum color

multiplicity µOPT =
λ

2
.

4.7 The Price of Anarchy on Graphs with Maximum

Degree 2

In this section we study the price of anarchy of path multicoloring games on

chains and rings, and we prove a constant upper bound for a broad class

of S­PMC(Ring) games with L = Ω(k2). Notice that this class essentially

encompasses all S­PMC(Ring) games of practical importance, as the num­

ber of wavelengths is limited in practice due to technological constraints,

whereas L can be arbitrarily large depending on network traffic. For the

sake of completeness, we show that the price of anarchy may become un­

bounded if the network designer opts to provide ample wavelengths to the

users, i.e., when L = o(k2).
We begin by showing a more involved necessary condition for Nash

equilibria of S­PMC(Ring) games than the one we have already seen in

Property 4.6. Let 〈〈G,P, k〉〉 be an S­PMC(Ring) game. Given a coloring

~c = (c1, . . . , c|P|), let Pe,αi
(~c) ⊆ P denote the set of paths colored with color αi

that use edge e ∈ E. We have, by definition,
∣

∣

∣Pe,αi
(~c)

∣

∣

∣ = µ(e, αi). For the

sake of simplicity, in the rest of the section we will write Pe,αi
instead of

Pe,αi
(~c). Furthermore, let [e, e′] denote the clockwise arc starting at edge e

and ending at edge e′.
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Lemma 4.22 (Structural property of S­PMC(Ring) Nash equilibria). Given

an S­PMC(Ring) game and a coloring ~c thereof which is a Nash equilibrium,

for every edge e and color αi there is an edge­simple arc [el , er ] with the

following properties:

1. for every color αj , αi , arc [el , er ] contains an edge which is an αj­

blocking edge for at least half of the paths in Pe,αi
, and

2. for every edge e′ of the arc [el , er ] it holds that

∣

∣

∣Pe′,αi
∩ Pe,αi

∣

∣

∣ ≥




















∣

∣

∣Pe,αi

∣

∣

∣

2





















. (4.48)

Proof. Since the game is in Nash equilibrium, by Property 4.6 every path

p ∈ Pe,αi
must have at least one αj­blocking edge, for every color αj , αi.

For a fixed color αj , αi, consider the two αj­blocking edges for some path

in Pe,αi
that are closest to edge e clockwise and counter­clockwise. It is not

hard to see that for at least one of these two edges, call it b(αj), the following

property holds: the arc [e, b(αj)] or the arc [b(αj), e] is contained in at least
⌈ |Pe,αi |

2

⌉

of the paths in Pe,αi
. In case that there is only one αj­blocking edge

for all paths in Pe,αi
, then the property holds a fortiori for this edge.

For every color αj we pick one such edge b(αj). If the above property

holds for arc [e, b(αj)], we add b(αj) to set B+, otherwise we add it to set B−.

We now claim that a clockwise traversal of the ring starting at edge e will

first encounter all edges of B+ and then all edges of B−. Indeed, if one edge

b− of B− lies before one edge b+ of B+ on this clockwise traversal, this would

imply that b− is traversed by the
⌈ |Pe,αi |

2

⌉

paths that contain the arc [e, b+]
and thus b− should also belong to B+.

The above discussion implies that if we define er to be the last edge of

B+ and el to be the first edge of B− encountered in this clockwise traversal,

then the edge­simple arc [el , er ] satisfies the conditions of the Lemma.

Definition 4.23. We define [el , er ]Pe,αi
to be the arc that is obtained by ap­

plying Lemma 4.22 for path set Pe,αi
. We shall also denote the extreme edges

of the arc by el

(

Pe,αi

)

and er

(

Pe,αi

)

.

4.7.1 A Constant Bound on the Price of Anarchy for Small Number

of Wavelengths

In this section we prove a constant upper bound on the price of anarchy

of S­PMC(Ring) games with L = Ω(k2); denote this class by S­PMC(Ring:
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L = Ω(k2)). This provides an upper bound on the price of anarchy of any

S­PMC(Chain: L = Ω(k2)) game as well, since every game defined on a chain

can be trivially embedded in a ring topology.

We first employ the structural property of S­PMC(Ring) Nash equilibria

(Lemma 4.22) in order to establish the existence of a heavily loaded edge

in S­PMC(Ring) games with µ̂ ≥ k. To that end, we make use of a recursive

argument. In particular, we define ẽ to be the edge where the maximum

color multiplicity occurs in a worst­case Nash equilibrium, and without

loss of generality we consider this color to be α1. We then observe that

all αj­blocking paths for paths in Pẽ,α1
must also be in equilibrium, hence

recursively there exist αs­blocking paths for them, for all αs , αj and so on.

In order to establish the desired load we prove a bound on the number of

these paths that use the same edge.

Lemma 4.24. In every S­PMC(Ring) game 〈〈G,P, k〉〉 with µ̂ ≥ k there is an

edge with load at least
µ̂k

4
.

Proof. Consider a coloring ~c which is a worst­case Nash equilibrium for

〈〈G,P, k〉〉. We define P1 to be the set of paths Pẽ,α1
which induce the social

cost µ̂. For i ≥ 2 we define Pi to be the set of αj­blocking paths for the path

set Pi−1, for some color αj not appearing in any of the path sets Ps, s < i,

with the following property:

[el , er ]Pi
⊆ [el , er ]Pi−1

, (4.49)

if such a path set exists. If more than one path sets with the desired

property exist, we arbitrarily pick one of them.

Let ei be the αj­blocking edge for Pi−1. Based on the definition of Pi as

a set of blocking paths for path set Pi−1 we can easily show that µ(ei , αj) ≥
µ̂ − i +1. The application of Lemma 4.22 for color αj and edge ei yields that

for every edge e ∈ [el , er ]Pi
we have that

µ(e, αj) ≥
µ̂ − i + 1

2
. (4.50)

Furthermore, since Equation 4.49 holds for all s ≤ i, the load of each edge

e ∈ [el , er ]Pi
is at least

∑

αj
µ(e, αj), where αj now ranges over the colors of

all path sets Ps, s ≤ i. Hence, for every edge e ∈ [el , er ]Pi
we have that

L(e) ≥
∑

αj

µ(e, αj) ≥
i

∑

s=1

µ̂ − s + 1

2
. (4.51)

Let now n be the first integer for which no such path set Pn exists

(see Figure 4.4) and consider the path set Pn−1. Since we are in Nash
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...

...

... ...

...

Pn−1

el(Pn−1)el(P2) er(P2) er(P1)

Level 1

Level 2

Level n − 1

Level n

el(P1) er(Pn−1)

P1

P2

α1

α2

αn−1

αn

αw

Figure 4.4: The path structure implied in the proof of Lemma 4.24. For the sake

of simplicity, paths in Pi are assumed to be colored with αi , for i < n.

equilibrium we know that there exist α­blocking edges for paths in Pn−1,

for every color α. We restrict our attention to the k − n + 1 colors which

have not yet appeared in any Ps, for s ≤ n − 1. Let αj be one of these

colors. Consider now an αj­blocking edge en such that en ∈ [el , er ]Pn−1
(by

Lemma 4.22 such an edge must exist). We now have that, at least half of

the αj­blocking paths in Pen ,αj
, i.e. at least

µ̂−n+1

2
paths, extend beyond one

of the extreme edges el(Pn−1) and er (Pn−1) of the arc [el , er ]Pn−1
(otherwise we

would have picked Pen ,αj
to be Pn). This means that for at least half of these

k − n + 1 blocking path sets, their paths leave the arc from the same edge,

incurring on it an additional load of k−n+1

2
· µ̂−n+1

2
.

Thus, the total load of this edge is at least

n−1
∑

i=1

µ̂ − i + 1

2
+

k − n + 1

2
· µ̂ − n + 1

2
=

µ̂k

4
+ (n − 1) · µ̂ − k + 1

4
. (4.52)

Since µ̂ ≥ k the above sum is at least
µ̂k

4
.

We are now ready to prove a constant upper bound on the price of

anarchy of games in S­PMC(Ring: L = Ω(k2)).

Theorem 4.25. The price of anarchy of any game in the class S­PMC(Ring:

L = Ω(k2)) is bounded by a constant.

Proof. Let 〈〈G,P, k〉〉 be a game in S­PMC(Ring: L = Ω(k2)). We distinguish

between two cases:

• If µ̂ ≥ k, then by Lemma 4.24 we get L ≥ µ̂k

4
. This implies that

L

k
≥ µ̂

4
⇒ µOPT ≥

µ̂

4
⇒ PoA(〈〈G,P, k〉〉) ≤ 4 . (4.53)
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• If µ̂ < k, then we can bound the price of anarchy as follows:

PoA(〈〈G,P, k〉〉) = µ̂

µOPT
≤ µ̂k

L
<

k2

L
, (4.54)

where we used successively the facts that µOPT ≥ L

k
and µ̂ < k.

The last inequality, combined with the fact that L = Ω(k2), implies

PoA(〈〈G,P, k〉〉) = O (1).

4.7.2 Unbounded Price of Anarchy for Large Number of Wave-

lengths

In this section we show that for any fixed ε in the range 0 < ε < 1, there

exists an infinite family of S­PMC(Chain: L = Θ(k2−ε)) games whose price of

anarchy is Ω(k
ε
2 ). This implies that the price of anarchy can get arbitrarily

large when the number of available colors increases, therefore the price

of anarchy is unbounded for the classes S­PMC(Chain: L = o(k2)) and

S­PMC(Ring: L = o(k2)).

Theorem 4.26. For any fixed ε, 0 < ε < 1, there exists an infinite family of

games in S­PMC(Chain: L = Θ(k2−ε)) with price of anarchy Ω(k
ε
2 ).

Proof. We first observe that for any fixed ε > 0, given an integer ρ ≥ 4 we

can construct an S­PMC(Chain: L = Θ(k2−ε)) game and a strategy profile

thereof that is a Nash equilibrium, with the following properties:

• the number of available colors is k =
⌈

ρ1+ ε
2−ε

⌉

,

• the maximum load is L = Θ(ρ2), and

• the maximum multiplicity of any color is µmax = ρ.

Construction For given values of the parameters ε and ρ, we describe the

construction of an S­PMC(Chain) game, using the path set P(A, αi) illus­

trated in Figure 4.5 as a building block. In what follows we describe the

structure of P(A, αi) along with a coloring of its paths that we will prove to

be a Nash equilibrium.

We define P(A, αi), with A ⊆ W = {α1, . . . , αk} and αi ∈ W \ A, to be a

path set consisting of:



4.7. THE PRICE OF ANARCHY ON GRAPHS WITH MAXIMUM DEGREE 2 95

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

...

...

...
...

... ...

main paths

secondary paths

w − |A| − 1 copies:

P (A ∪ {αi}, αj), for each αj ∈ W \ (A ∪ {αi})

w − |A| − 1 copies:

P (A ∪ {αi}, αj), for each αj ∈ W \ (A ∪ {αi})

⌈

ρ−|A|
2

⌉

αi

αi

αi αi

P (A ∪ {αi}, αw)P (A ∪ {αi}, α1) P (A ∪ {αi}, α1) P (A ∪ {αi}, αw)

⌈

ρ−|A|
2

⌉

− 2

⌊

ρ−|A|
2

⌋

⌊

ρ−|A|
2

⌋

− 2

Figure 4.5: Recursive construction of path set P(A, αi ) for αi ∈ W \ A.

• the main paths: these are the ρ − |A| paths of color αi, arranged as

shown in the top part of Figure 4.5, overlapping all together on some

edge (henceforth called the central edge for P(A, αi)) with half of them

extending to the left of this edge and the other half extending to the

right of it,

• the secondary paths: these are the ρ− |A| −4 paths of color αi , placed

below the main paths as shown in Figure 4.5, and

• the copies of P
(

A ∪ {αi}, αj

)

, for every αj ∈ W \ (A ∪ {αi}), one copy

of P
(

A ∪ {αi}, αj

)

to the left of the central edge of P(A, αi), and one

copy to the right. We say that P(A, αi) contains each of the copies

P
(

A ∪ {αi}, αj

)

and we write P(A, αi) ≻ P
(

A ∪ {αi}, αj

)

. The reflexive

and transitive closure of ≻ is denoted by ≻∗.

We now claim that the S­PMC(Chain) game B = 〈〈G, P (∅, α1) ,
⌈

ρ1+ ε
2−ε

⌉

〉〉,
where G is a chain long enough to accommodate all paths of P (∅, α1), is a

game in S­PMC(Chain: L = Θ(k2−ε)) with the desired properties. In what

follows we briefly sketch the proof of this claim.

In order to prove that the coloring described above is indeed a Nash

Eequilibrium for all paths in P(∅, α1), we first note that for every P(A, αi)
its main and secondary paths lying to the left (resp. right) of the central

edge are blocked from switching to any color αj < A (with αj , αi ) by the left

(resp. right) copy of P
(

A ∪ {αi}, αj

)

, where color αj appears with multiplicity

ρ−|A|−1. Furthermore, it is easy to show (using a straightforward induction

on the size of A) that they are also blocked from switching to any color

αj ∈ A by the main and secondary paths of some path set P(A′, αj), with
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P(A′, αj) ≻∗ P(A, αi). Since every path of P (∅, α1) is a main or secondary path

for some path set P(A, α), it follows that all paths are in Nash equilibrium.

Finally, for the coloring described, the maximum multiplicity appears for

color α1 on the central edge of path set P(∅, α1) and is indeed equal to ρ.

We then notice that, since the number of colors k =
⌈

ρ1+ ε
2−ε

⌉

exceeds that

of the maximum multiplicity µmax = ρ, the recursive construction of P(∅, α1)
will eventually reach a trivial base case, which incurs an additional load of

Θ(1). It is now easy to show that the maximum load is indeed L = Θ(ρ2).
This completes the construction.

Now, the class S­PMC(Chain) is a subclass of S­PMC(Rooted­Tree),

therefore by Theorem 4.11 the optimal strategy profile for the game defined

above has social cost µOPT =
⌈

L

k

⌉

, hence µOPT < L

k
+ 1. Additionally, the cost

of the worst­case Nash equilibrium must be µ̂ ≥ µmax. The price of anarchy

for this game is therefore:

PoA(B) =
µ̂

µOPT
>

µmax
L

k
+ 1
=

k · µmax

L + k
. (4.55)

It is easy to see that, if µmax, L, and k satisfy the above properties, then

the last expression grows like Θ
(

ρ
ε

2−ε

)

as ρ goes to infinity, yielding the

promised asymptotic lower bound of Ω(k
ε
2 ).

Notice that there is no sense in considering games where the number

of wavelengths is larger than the number of paths, i.e. k ≥ |P|, because

the price of anarchy would then be trivially equal to 1. It is easy to verify

that the construction of Theorem 4.26 allows us to create instances with

arbitrarily large ratio k2

L
, with the number of paths increasing accordingly

in any case thus ensuring that k < |P|.

4.8 Conclusions

In this chapter we conducted a thorough study of the price of anarchy

in the Selfish Path MultiColoring model for non­cooperative wavelength

assignment in multifiber optical networks. The results we obtained in

Section 4.6 show that the price of anarchy can grow unbounded even in

simple optical networks of maximum degree 3. It seems that the player­

charging mechanism of this model is not strong enough to force players

into low­fiber­cost Nash equilibria.

On the other hand, the situation regarding networks of degree 2 seems

to be rather gratifying. Given the ever­increasing network traffic and the

fact that the number of available wavelengths in commercially deployed
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optical fibers is not expected to grow in the near future, it makes perfect

sense to stipulate k = O
(√

L
)

as a valid assumption for practical purposes.

Therefore, it is safe to conclude that the price of anarchy of our model is

bounded for rings and chains.

We have also shown that when the number of available wavelengths

increases beyond Θ
(√

L
)

, it is possible to construct Selfish Path Multi­

Coloring games with unbounded price of anarchy. This may be compared

to the Braess paradox [17, 18], where the inclusion of a high­speed link in a

transportation network results in the deterioration of the solution reached

by the players.

Finally, stars, another important network topology, possess low­fiber­

cost worst­case Nash equilibria and we can even compute 1

2
­approximate

Nash equilibria for games in stars, in view of Theorem 4.12.





Chapter 5

Colored Resource Allocation Games

5.1 Introduction

We now present a general model for non­cooperative resource allocation.

In this model, the players have access to a set of resources, each one of

which comes in several different versions—one for each color. As is the case

in congestion games [67], each player can choose among various subsets

of the set of resources. However, the resources picked by a single player

must all be of the same color.

This class of games, under various social and player costs, can model

non­cooperative versions of routing and wavelength assignment problems

in multifiber all­optical networks. These games can be viewed as an exten­

sion of congestion games where each player has his strategies in multiple

copies corresponding to colors. When restricted to (optical) network games,

facilities correspond to physical links of the network and colors correspond

to wavelengths. The number of players using an edge in the same color

represents a lower bound on the number of fibers needed to implement

the corresponding physical link. The wavelength continuity constraint is

reflected in the model by the restriction we have placed on player strategy

spaces, i.e., that each player must pick resources of the same color. Hav­

ing this motivation in mind, we consider both the max player cost, where

the cost of a player is the maximum congestion over the resources she

uses, and the sum player cost, where the cost of a player is the sum of

the congestion of the resources she uses. For our purposes it suffices to

restrict our study to identity latency functions.

We estimate the price of anarchy of colored resource allocation games

under three different social cost functions. Two of them are standard in the

literature (see e.g. [24]): the first (max social cost) is equal to the maximum

99
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Table 5.1: The price of anarchy of Colored Congestion Games (sum player cost).

Results for classical congestion games are shown in the right column.

Social cost Colored Congestion Games Congestion Games

scmax Θ

(√

N

k

)

Θ

(√
N
)

[24]

scsum
5

2

5

2
[24]

scfib Θ

(√
k · |F |

)

—

Table 5.2: The price of anarchy of Colored Bottleneck Games (max player cost).

Results for classical bottleneck games are shown in the right column.

Social cost Colored Bottleneck Games Bottleneck Games

scmax Θ

(

N

k

)

Θ (N) [19]

scsum Θ

(

N

k

)

Θ (N) [19]

scfib Θ

( |E~A|
|E~A* |

N

k

)

—

player cost and the second (sum social cost) is equal to the sum of player

costs or, equivalently, the average player cost. The third one, which we will

call fiber social cost, is especially meaningful in the setting of multifiber all­

optical networks: it is equal to the sum over all facilities of the maximum

color congestion on each facility. Note that in the optical network setting

this function represents the total fiber cost needed to accommodate the

communication requests, hence it captures the objective of a well­studied

optimization problem ([62, 61, 3, 4]). Let us also note that the max social

cost function under the max player cost captures the objective of another

well known problem, namely minimizing the maximum fiber multiplicity

over all edges of the network [3, 49, 53], which we studied in depth in

Chapter 4. However, in Chapter 4 we focused on a fixed routing model

where the path on which each communiciation request is to be routed has

been decided in advance, and the only choice given to players was the

choice of wavelength. The model we study in this chapter allows players to

make routing decisions as well.

We derive tight bounds on the price of anarchy for Colored Resource

Allocation Games [9]. These bounds are summarized in Tables 5.1 and 5.2.

It can be shown that the bounds for Colored Congestion Games remain

tight even for network games.

Observe that known bounds for classical congestion and bottleneck
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games can be obtained from our results by simply setting k = 1. On

the other hand one might notice that our games can be casted as classi­

cal congestion or bottleneck games with W |F | facilities. However, we are

able to derive better upper bounds in some cases by exploiting the special

structure of the players’ strategies.

5.2 Preliminaries

Definition 5.1 (Colored resource allocation games). A colored resource al­

location game is defined as a tuple 〈〈F,P, k, {Ei}i∈P〉〉, where:

1. F is a set of facilities fi , 1 ≤ i ≤ |F |.

2. P is the set of players. Let N denote the size of set P.

3. k is the number of colors. As usual, we will use W for the set of colors.

4. Ei ⊆ 2F is the set of possible facility combinations for player i. The

set Si = Ei ×W is the set of available strategies for player i. We will

denote the facility combination chosen by player i by Ei ∈ Ei , and the

color choice of player i by ai ∈ W . We will then say that player i is

playing strategy Ai = (Ei , ai) ∈ Si .

A strategy profile for the game will be denoted by a vector ~A = (A1, . . . , A|P|) of

player strategies. We will use the notation nf,c

(

~A
)

for the number of players

that use facility f ∈ F with color c ∈ W in the strategy profile ~A.

Depending on the player cost function we define two subclasses of col­

ored resource allocation games:

Definition 5.2 (Colored Congestion Games). A Colored Congestion Game

(CCG) is a colored resource allocation game with sum player costs, defined

as follows for each player i ∈ P:

Ci

(

~A
)

=

∑

e∈Ei

ne,ai

(

~A
)

. (5.1)

Definition 5.3 (Colored Bottleneck Games). A Colored Bottleneck Game

(CBG) is a colored resource allocation game with max player costs, defined

as follows for each player i ∈ P:

Ci

(

~A
)

= max
e∈Ei

ne,ai

(

~A
)

. (5.2)
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In the same manner as we did in Chapter 4, we will say that a strategy

profile is a pure Nash equilibrium (PNE), or simply Nash equilibrium (NE), if

no player can reduce her cost by changing strategy unilaterally. From the

definition of Nash Equilibrium we can derive the following two facts that

hold in Colored Congestion and Bottleneck Games.

Fact 5.4. If ~A is a Nash equilibrium of a CCG game, then for any player i ∈ P
we have:

Ci

(

~A
)

≤
∑

e∈E′i

(

ne,a′i

(

~A
)

+ 1
)

, (5.3)

for any E′i ∈ Ei and for any a′i ∈ W .

Fact 5.5. If ~A is a Nash equilibrium of a CBG game, then for any player i ∈ P
we have:

Ci

(

~A
)

≤ max
e∈E′i

(

ne,a′i

(

~A
)

+ 1
)

, (5.4)

for any E′i ∈ Ei and for any a′i ∈ W . Equivalently, for any E′i ∈ Ei and a′i ∈ W ,

there is some e ∈ E′i such that

Ci

(

~A
)

≤ ne,a′i

(

~A
)

+ 1 . (5.5)

We note immediately the similarity of Equation 5.5 to Equation 4.9

which defines the blocking edges in Definition 4.5.

For each one of the two subclasses of colored resource allocation games

that we just defined, we will consider three different social cost functions.

The max player cost scmax is given by

scmax

(

~A
)

= max
i∈P

Ci

(

~A
)

. (5.6)

The sum player cost scsum is given by

scsum

(

~A
)

=

∑

i∈P
Ci

(

~A
)

. (5.7)

Finally, the fiber social cost scfib is given by

scfib

(

~A
)

=

∑

f ∈F
max
a∈W

nf,a

(

~A
)

. (5.8)

Let ~A* be a minimum­social­cost strategy profile for some colored re­

source allocation game G under some social cost sc. Analogously to the

definition in Section 4.3.1, the price of anarchy (PoA) of G is:

PoA(G) =
max~A is NE sc

(

~A
)

sc
(

~A*
) . (5.9)
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5.3 Colored Congestion Games

5.3.1 The Price of Anarchy for max Social Cost

Theorem 5.6. Under the social cost scmax, the price of anarchy of any Colored

Congestion Game 〈〈F,P, k, {Ei}i∈P〉〉 is O
(√

N

k

)

.

Proof. Let ~A be a Nash equilibrium and let ~A* be an optimal strategy profile.

Without loss of generality we consider the first player to have the maximum

cost, scmax

(

~A
)

= C1

(

~A
)

. Thus, we need to bound C1

(

~A
)

with respect to the

optimum social cost scmax

(

~A*
)

= maxj∈PCj

(

~A*
)

.

Let ~A*
1 =

(

E*
1, a*

1

)

be the strategy of player 1 in ~A*. Since ~A is a Nash

equilibrium, no player benefits by changing either her color or her choice

of facilities. Therefore, for any a ∈ W :

C1

(

~A
)

≤
∑

e∈E*
1

(

ne,a

(

~A
)

+ 1
)

≤
∑

e∈E*
1

ne,a

(

~A
)

+ C1

(

~A*
)

. (5.10)

Let I ⊆ P be the set of players that use some facility e ∈ E*
1 in strategy

profile ~A. The sum of their costs in ~A is:
∑

i∈I
Ci

(

~A
)

≥
∑

e∈E*
1

∑

a∈W
n2

e,a

(

~A
)

(5.11)

≥

(

∑

e∈E*
1

∑

a∈W ne,a

(

~A
))2

∣

∣

∣E*
1

∣

∣

∣ · k
(5.12)

≥

(

k ·mina∈W
∑

e∈E*
1
ne,a

(

~A
))2

∣

∣

∣E*
1

∣

∣

∣ · k
(5.13)

≥
k ·

(

mina∈W
∑

e∈E*
1
ne,a

(

~A
))2

∣

∣

∣E*
1

∣

∣

∣

. (5.14)

The first inequality holds since a player in I might also use facilities not in

E*
1, and the second inequality holds from the Cauchy­Schwarz inequality.

Let amin = arg mina∈W
∑

e∈E*
i
ne,a

(

~A
)

. Thus we have:





















∑

e∈E*
1

ne,amin

(

~A
)





















2

≤
∣

∣

∣E*
1

∣

∣

∣

k
·
∑

i∈I
Ci

(

~A
)

. (5.15)

From [24] we have:
∑

i∈P
Ci

(

~A
)

≤ 5

2

∑

i∈P
Ci

(

~A*
)

. (5.16)



104 COLORED RESOURCE ALLOCATION GAMES

......
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h1 h2 hk

k − 1 dashed pathsover ea
h edge hi

n1 n2 nkn0 nk−1

Figure 5.1: A worst­case instance that proves the tightness of the upper bound,

depicted as network game. A dashed line represents a path of length ℓ connecting

its two endpoints.

Combining the above two inequalities we get:





















∑

e∈E*
1

ne,amin

(

~A
)





















2

≤
∣

∣

∣E*
1

∣

∣

∣

k

∑

i∈I
Ci

(

~A
)

≤
∣

∣

∣E*
1

∣

∣

∣

k

∑

i∈P
Ci

(

~A
)

≤ 5

2

∣

∣

∣E*
1

∣

∣

∣

k

∑

i∈P
Ci

(

~A*
)

.

(5.17)

Combining this with Equation 5.10 for a = amin, we get:

C1

(

~A
)

≤ C1

(

~A*
)

+

√

√

5

2

∣

∣

∣E*
1

∣

∣

∣

k

∑

i∈P
Ci

(

~A*
)

. (5.18)

Since
∣

∣

∣E*
1

∣

∣

∣ ≤ C1

(

~A*
)

and Ci

(

~A*
)

≤ scmax

(

~A*
)

, we finally get

C1

(

~A
)

≤














1 +

√

5

2

N

k















scmax

(

~A*
)

. (5.19)

Theorem 5.7. There exists an infinite family of Colored Congestion Games

〈〈F,P, k, {Ei}i∈P〉〉 with social cost scmax, that have price of anarchy Ω

(√

N

k

)

.

Proof. We will describe the lower bound game as a network game. The

underlying network is illustrated in Figure 5.1. The game itself is a small

variation of the construction presented in [24].

In that network k major players want to send traffic from n0 to nℓ.

For every i, 0 ≤ i ≤ ℓ − 1, there are (ℓ − 1)k minor players that want to

send traffic from node ni to node ni+1. In the worst­case equilibrium ~A all

players choose the short central edge, leading to social cost scmax

(

~A
)

= ℓ2.

On the other hand, in the optimum strategy profile ~A*, the minor players

are equally divided on the dashed­line paths and the major players choose
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the central edge. This leads to scmax

(

~A*
)

= ℓ, and the price of anarchy is

therefore:

PoA(〈〈F,P, k, {Ei}i∈P〉〉) = ℓ = Θ















√

N

k















. (5.20)

5.3.2 The Price of Anarchy for sum Social Cost

The price of anarchy for social cost scsum is upper­bounded by 5

2
, as proved

in [24]. For the lower bound, we use a slight modification of the construc­

tion described in [24]. We have Nk players and 2N facilities. The facilities

are separated into two groups: {h1, . . . , hN } and {g1, . . . , gN }. The players

are divided into N groups of k players. Each group i has possible facility

combinations {hi, gi} and {gi+1, hi−1, hi+1}. The optimal strategy profile ~A* is

for all players in the i­th group to select their first strategy and be equally

divided in the k colors, leading to scsum

(

~A*
)

= 2Nk. In the worst­case Nash

equilibrium ~A players choose their second strategy and are equally divided

in the k colors, leading to scsum

(

~A
)

= 5Nk. Thus, the price of anarchy of

this game is 5

2
and the upper bound remains tight in our model too.

5.3.3 The Price of Anarchy for fiber Social Cost

Theorem 5.8. Under the social cost scfib, the price of anarchy of any Colored

Congestion Game 〈〈F,P, k, {Ei}i∈P〉〉 is O
(√

k · |F |
)

.

Proof. Let ~S be a strategy profile of the game and W = {w1, . . . , wk} be the

set of colors. For a facility e ∈ F , we denote by ne

(

~S
)

the vector

ne

(

~S
)

=

(

ne,w1

(

~S
)

, . . . , ne,wk

(

~S
))

. (5.21)

In terms of the above vector we can write:

scfib

(

~S
)

=

∑

e∈F
max
a∈W

ne,a

(

~S
)

=

∑

e∈F

∥

∥

∥

∥

∥

ne

(

~S
)

∥

∥

∥

∥

∥∞
. (5.22)

From norm inequalities we have that

∥

∥

∥

∥

∥

ne

(

~S
)

∥

∥

∥

∥

∥

2√
k

≤
∥

∥

∥

∥

∥

ne

(

~S
)

∥

∥

∥

∥

∥∞
≤

∥

∥

∥

∥

∥

ne

(

~S
)

∥

∥

∥

∥

∥

2

, (5.23)
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therefore:

scfib

(

~S
)

=

∑

e∈F

∥

∥

∥

∥

∥

ne

(

~S
)

∥

∥

∥

∥

∥∞
≤

∑

e∈F

√

∑

a∈W
n2

e,a

(

~S
)

≤
√

|F |
√

∑

e∈F

∑

a∈W
n2

e,a

(

~S
)

,

(5.24)

where the last inequality is a manifestation of the norm inequality ‖~x‖1 ≤√
n ‖~x‖2, where ~x is a vector of dimension n. Now, from the first inequality

of Equation 5.23 we have:

scfib

(

~S
)

≥ 1
√

k

∑

e∈F

√

∑

a∈W
n2

e,a

(

~S
)

≥ 1
√

k

√

∑

e∈F

∑

a∈W
n2

e,a

(

~S
)

. (5.25)

Combining Equations 5.25 and 5.24 yields:

1
√

k

√

scsum

(

~S
)

≤ scfib

(

~S
)

≤
√

|F | ·
√

scsum

(

~S
)

. (5.26)

From [24] we know that the price of anarchy under the sum social cost

is 5

2
. Let ~A be a worst­case Nash equilibrium under the fiber social cost

and let ~A* be an optimal strategy profile under the same social cost. From

Equation 5.26 we know that scfib

(

~A
)

≤
√
|F | ·

√

scsum

(

~A
)

and scfib

(

~A*
)

≥
1√
k

√

scsum

(

~A*
)

. Thus:

PoA(〈〈F,P, k, {Ei}i∈P〉〉) =
scfib

(

~A
)

scfib

(

~A*
) ≤

√

k · |F |

√

√

√

√ scsum

(

~A
)

scsum

(

~A*
) ≤

√

k · |F |
√

5

2
.

(5.27)

Theorem 5.9. There exists an infinite family of Colored Congestion Games

〈〈F,P, k, {Ei}i∈P〉〉 with social cost scfib, that have price of anarchy
√

k · |F |.

Proof. Consider a Colored Congestion Game with N players, |F | = N facil­

ities and k = N colors. The possible facility combinations for each player

consist of all singleton facility sets, i.e., Ei = {{f1}, {f2}, . . . , {fN }}.
The above game has a worst­case Nash equilibrium with social cost N

when all players choose a different facility in arbitrary colors. On the other

hand, in the optimum strategy profile the players use as few facilities as

possible, filling up all colors of these facilities. This requires N

k
facilities,

each of which contributes 1 to the social cost. Therefore, the optimum

social cost is N

k
, yielding a price of anarchy of k =

√
k · |F |.
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5.4 Colored Bottleneck Games

5.4.1 The Price of Anarchy for max Social Cost

Theorem 5.10. Under the social cost scmax, the price of anarchy of any

Colored Bottleneck Game 〈〈F,P, k, {Ei}i∈P〉〉 is at most
⌈

N

k

⌉

.

Proof. Assume that the social cost of a Nash equilibrium is strictly larger

than
⌈

N

k

⌉

. This implies that there is some player whose cost is strictly

larger than
⌈

N

k

⌉

, so there is some facility­color pair used by strictly more

than
⌈

N

k

⌉

players. Since we are in Nash equilibrium, Fact 5.5 implies that

for every other color there must be some facility in this player’s chosen

facility combination used by strictly more than
⌈

N

k

⌉

− 1 players. Since

players playing different colors are necessarily distinct, the above implies

the existence of at least (k − 1) ·
⌈

N

k

⌉

+

⌈

N

k

⌉

+ 1 ≥ N + 1 players, which is a

contradiction.

Therefore, the social cost of any Nash equilibrium is at most
⌈

N

k

⌉

. Since

the minimum­cost strategy profile has cost at least 1, the claim is proved.

Theorem 5.11. There exists an infinite family of Colored Bottleneck Games

〈〈F,P, k, {Ei}i∈P〉〉 with social cost scmax, that have price of anarchy N

k
.

Proof. Consider the following class of CBG games. There are N players, N

facilities, and k colors, where N is an integer multiple of k. Each player i

has two possible facility combinations: Ei = {{fi}, {f1, . . . , fN }}. In a worst­

case Nash equilibrium, all players choose the second combination and they

are equally divided in the k colors. This leads to a player cost of N

k
for each

player and thus to a social cost of N

k
. In the optimal strategy profile, all

players would choose their first strategy leading to player cost and social

cost equal to 1. Thus, the price of anarchy for this game is N

k
.

5.4.2 The Price of Anarchy for sum Social Cost

By Theorem 5.10, we know that in any Nash equilibrium ~A, the cost of any

player is Ci

(

~A
)

≤
⌈

N

k

⌉

. Moreover, it is not hard to see that in the minimum­

cost strategy profile ~A*, scsum

(

~A*
)

≥ N . Therefore, the price of anarchy is

upper­bounded by
N ·⌈ N

k ⌉
scsum(~A*) ≤

⌈

N

k

⌉

.

The game we constructed in the proof of Theorem 5.11 can also be used

here to prove that the bound we just proved is tight.
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5.4.3 The Price of Anarchy for fiber Social Cost

Definition 5.12. Let ~S be a strategy profile of a game 〈〈F,P, k, {Ei}i∈P〉〉. We

define E~S to be the set of facilities used by at least one player in the strategy

profile ~S, i.e.

E~S =

⋃

i∈P
Ei . (5.28)

Theorem 5.13. Under the social cost scfib, the price of anarchy of any Col­

ored Bottleneck Game 〈〈F,P, k, {Ei}i∈P〉〉 is at most
|E~A|
|E~A* | ·

⌈

N

k

⌉

, where ~A is a

worst­case Nash equilibrium and ~A* is a minimum­cost strategy profile.

Proof. Let amax(e) denote the color with the maximum multiplicity at facility

e, in the worst­case Nash equilibrium ~A. Let i be a player that uses the

facility copy (e, amax(e)). Since Ci

(

~A
)

= maxe∈Ei
ne,ai

(

~A
)

, it must hold that

ne,amax(e)

(

~A
)

≤ Ci

(

~A
)

. In fact we can state the following general property: for

every e ∈ F , there is some player i such that

ne,amax(e)

(

~A
)

≤ Ci

(

~A
)

. (5.29)

We already know from Theorem 5.10 that for any player i, Ci

(

~A
)

≤
⌈

N

k

⌉

,

since ~A is a Nash equilibrium. Moreover, it is clear that scfib

(

~A*
)

≥ |E~A* |.
From the above we can conclude:

scfib

(

~A
)

scfib

(

~A*
) ≤ |E~A|
|E~A* | ·

⌈

N

k

⌉

. (5.30)

Theorem 5.14. There exists an infinite family of Colored Bottleneck Games

〈〈F,P, k, {Ei}i∈P〉〉 with social cost scfib, that have price of anarchy
|E~A|
|E~A* | ·

⌈

N

k

⌉

,

where ~A is a worst­case Nash equilibrium and ~A* is a minimum­cost strategy

profile.

Proof. We use a slight modification of the game used in Theorem 5.11. The

set of possible facility combinations of each player i is Ei = {{fi}, {f1, . . . , fM }},
for some M ≥ N . In the worst­case Nash equilibrium all players will play

the second combination leading to scfib

(

~A
)

= M · N

k
and |E~A| = M . On the

other hand, in the minimum­cost strategy profile, all players will play the

first combination leading to scfib

(

~A*
)

= N and |E~A* | = N . Therefore, the price

of anarchy for this game is PoA(〈〈F,P, k, {Ei}i∈P〉〉) = M

N
· N

k
=
|E~A|
|E~A* | ·

N

k
.
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5.5 Conclusions

We have introduced colored resource allocation games, a class of games

which generalize both congestion and bottleneck games. The main feature

of these games is that players have their strategies in multiple copies (col­

ors). Therefore, these games can serve as a framework to describe routing

and wavelength assignment games in multifiber all­optical networks. Al­

though one might cast such games as classical congestion or bottleneck

games, it turns out that the proliferation of resources together with the

structure imposed on the players’ strategies allows us in some cases to

prove better bounds on the price of anarchy.

In our exposition, we have not considered the question of convergence

to Nash equilibria. Let us briefly note here that Colored Congestion Games

admit of exact potentials, since, as we said, they can be cast as regular

Congestion Games. Therefore, their convergence to a Nash equilibrium

in finitely many steps is guaranteed. In the case of Colored Bottleneck

Games, one can follow lexicographic­order arguments similar to the ones

used in the proof of Theorem 4.8, in order to show that these games also

admit a potential, albeit not an exact one. Therefore, convergence to a

Nash equilibrium is guaranteed in this case as well.

Regarding the bounds that we managed to show on the price of anar­

chy, one may say that these are mostly negative results. With the exception

of games with sum social and player costs where the price of anarchy is

constant, in all other cases the price of anarchy is unbounded. Especially

in the case of Colored Congestion Games, all of our lower bound construc­

tions can be recast as network games. Therefore, we know there exist

actual networks where the price of anarchy can be unbounded. On the

other hand, the constructions we give for Colored Bottleneck Games can­

not be seen as network games. This seems to give some hope that a more

detailed study of Colored Bottleneck Games defined on networks might

yield better bounds on the price of anarchy.

In both cases, it would be interesting to examine specific network

topologies and see which of them allow for better system behavior. Finally,

another direction would be to consider more general latency functions.

This would make sense both in the case where fiber pricing is not linear

in the number of fibers, and also in the case where the network operator

seeks to determine an appropriate pricing policy so as to reduce the price

of anarchy.





Chapter 6

Path Coloring Applied to a

Transportation Problem

In this chapter we deal with an interesting problem in transportation net­

works, that of scheduling a given set of routes on a transportation network

so that the minimum headway is maximized. The minimum headway is a

measure of the flexibility of the schedule with respect to perturbations of

the departure or arrival times of a small number of routes. The exposition

in this chapter aims to bring forward a fundamental connection between

the headway maximization problem and a path coloring problem that has

been thoroughly studied in the literature in view of its direct application

on wavelength assignment in WDM networks.

The purpose of this chapter is twofold. First, we study the complexity of

headway optimization and provide exact and approximation algorithms for

certain fundamental network topologies. Second, our arguments are per­

meated with the aforementioned underlying connection to path coloring,

which serves to highlight the applicability of path coloring models on a wide

and diverse range of network/scheduling problems, apart from the routing

and wavelength assignment problems in WDM networks which have been

our main focus throughout this thesis.

6.1 Introduction

In railway networks where trains use the same railway segment quite often

(e.g. metro) it would be desirable to schedule trains so as to guarantee an

ample time distance between successive trains that pass from the same

point of the network (in the same direction); this time distance is usually

called headway. Such a scheduling would result in a more delay­tolerant

111
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system. This is a particularly essential requirement in cases where there

are several intersecting routes that have to be carried out periodically and

the time limits are such that some route must start before the termination

of another route with which it shares a part of the network.

Here, we formulate this situation by introducing the Periodic Metro

Scheduling (PMS) problem: given a rail network with one line per direc­

tion, a set of routes (described as paths over the network graph), and a

time period, we seek to arrange the departure times of routes so that the

minimum headway is maximized. Although our motivation comes from

railway optimization, PMS may also describe other transportation media

timetabling problems.

We show [7] the NP­hardness of PMS by reduction from Path Coloring

(PC), which is the problem of coloring paths in a graph with the minimum

number of colors so that intersecting paths receive different colors. We

further investigate the relation between the two problems and present exact

algorithms for chain and spider networks that rely on a reverse reduction

from PMS to PC. Moreover, we show that this technique also applies to

rings for which the time needed to traverse the ring is a multiple of the

given period. This results in a
(

1

ρ

L

L+1

)

­approximation algorithm for such

instances, where ρ is the approximation ratio we can achieve for PC and

L is the maximum number of routes passing through any edge of the

network. For ring instances that do not satisfy this condition we present a

specifically designed algorithm that achieves an approximation guarantee

of 1

5
. Finally, we show how to apply the path coloring technique to tree

networks where the time distances between stations are integer multiples

of the half of the period, resulting in a
(

1

ρ

L

L+1

)

­approximation algorithm for

this topology as well. Our algorithms employ known algorithms for PC

[22, 55, 34, 39] as subroutines.

6.2 Related Work

To the best of our knowledge, Periodic Metro Scheduling has not been

studied before in the form of an optimization problem. The decision version

of PMS, namely the problem of guaranteeing a minimum headway not

smaller than a given threshold, can be described in terms of a generic

problem known as Periodic Event Scheduling Problem (PESP) [72]. PESP

has been studied by several researchers, see e.g. [71, 51, 47, 50] and

references therein. However, we are not aware of any concrete results for

PESP that could apply to PMS, as PESP is usually studied in conjuction

with several other constraints that render the problem quite hard and the
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proposed methods for solving it are mainly algorithms with no guaranteed

efficiency based on ‘‘branch­and­bound’’, ‘‘branch­and­cut’’, and ‘‘branch­

and­price’’ methods. A similar problem as PMS has been defined in [43],

and it has been proven to be NP­complete. However, the setting is again

broader and the completeness results apply to general graphs.

There is a huge bibliography on railway optimization topics; the in­

terested reader is referred to [20] for a nice collection of concepts and

earlier results on railway optimization. More recent work on periodic train

scheduling includes a rolling stock minimization problem where routes are

given and it is sought to determine departure times either arbitrarily (as

in our case) or within an allowed time window [30]. However, the objective

there is quite different, namely to serve all routes with a minimum num­

ber of trains while it is allowed for routes to simultaneously depart from

the same station even if they follow the same direction (it is assumed that

multiples lines are available). The rolling stock minimization problem with

fixed departure times has been extensively studied: the simplest version,

also known as Minimum Fleet Size [14], or Rolling Stock Rostering [31],

can be solved exactly in polynomial time; Dantzig and Fulkerson [27] give

the first known algorithm and Erlebach et al. [31] present one of improved

complexity. In [31], certain variations are also studied and shown APX­

hard: allowing empty rides and requiring that the trains pass through a

maintenance station.

Another problem that has recently drawn attention is that of delay

management, that is, the question of how to reduce or increase delays of

trains in order to better serve railway customers [70, 40, 41].

Very recently, Dahl [26] has studied a model which is quite closely

related to Periodic Metro Scheduling. It can be viewed as a special case

of PMS in which the routes only share a single edge and the question is

whether the frequency of each route can be adjusted so that there are no

collisions.

6.3 Preliminaries

We assume that all trains move at the same speed, therefore the duration

of traveling between any two connected stations is the same for all trains.

In the sequel we denote the travel time between two stations connected

by edge e as t(e). We also assume that edges represent directed railway

lines and any two connected stations are linked by a pair of opposite di­

rected edges. For simplicity we consider that the waiting time at stations

is negligible.
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We are interested in maximizing the minimum headway between any

two intersecting routes, that is, routes that share at least one edge. Note

that, due to the uniformity of speed, it suffices to measure the headway

between intersecting routes only at the starting node (station) of the first

edge of each common section. More precisely, let e be a common edge

between routes r and r ′ and t (resp. t′) be the time at which r (resp. r ′)

enters edge e. Then, the headway between r and r ′ at edge e is defined as

min{t − t′ modT, t′ − t modT }. When the headway between two routes in

an edge is 0, we say that the routes collide.

We will denote the source node of a route r by s(r), and its target node

by e(r). We define τ(i, j) to be the time distance between nodes i and j in

the input graph, whenever it is uniquely defined.

Let us now formally define the headway maximization problem.

Problem 6.1 (Periodic Metro Scheduling, PMS).

Instance: 〈G, t, T,R〉, where G = (V, E) is a directed graph with bidirected

edges, t : E → N is an inter­station time distance function, T > 0 is an integer

time period, and R = {

r1, . . . , r|R|
}

is a collection of simple paths defined on G

(routes).

Feasible solution: A schedule for R, that is, a function stime :R → [0, T )
which assigns a departure time to each route.

Goal: Maximize the minimum headway between any two intersecting routes.

We define L(e) to be the congestion on edge e, that is the number of

routes that pass through edge e of the network. Let L = maxe L(e). It is not

hard to see that T

L
is an upper bound to the objective value of an optimal

solution (OPT), because routes cannot be spaced further apart than T

L
on

the edge with maximum congestion.

In our study we will pinpoint a close relationship between PMS and

Path Coloring (PC), which is defined as follows:

Problem 6.2 (Path Coloring, PC).

Instance: 〈G,P〉, where G is a directed graph and P = {

p1, . . . , p|P|
}

is a

collection of simple paths defined on G.

Feasible solution: An assignment of colors to all paths of P such that inter­

secting paths are assigned different colors.

Goal: Minimize the number of colors used.

Path Coloring (note that here we consider the directed version) can

be solved optimally in polynomial time in chains, stars, and spiders by a

greedy algorithm (folklore, see e.g. [42]) using L colors, but is known to be

NP­hard in rings [39] and trees [55]. Note that a spider is a tree in which
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Algorithm 10 An algorithm for PMS in chain networks

Input: an instance 〈G, t, T,R〉 of PMS, where G is a chain

1: Compute a coloring of routes with exactly L colors from {0, . . . , L − 1},
using the greedy algorithm for PC in chains. Let color(r) denote the

color assigned to route r.

2: Set t = T

L
and define L time slots as follows: 0, t, 2t, . . . , (L − 1)t.

3: Assign time slots to routes according to the coloring obtained in step 1,

namely: timeslot(r) := color(r) · t.
4: For each route r ∈ R set the starting time as follows:

stime(r) = (timeslot(r) + τ(0, s(r))) modT .

at most one internal node has degree 3 or greater (this is called the central

node), or equivalently, a graph resulting from a star whose edges have been

replaced by chains, also called legs of the spider.

We will use the notation a ≡T b to denote the fact that a modT =

b modT .

6.4 Headway Optimization in Chain, Star, and Spider

Networks

6.4.1 An Algorithm for Chains

In chains we label the nodes of the graph from 0 to n − 1 successively.

Since all connections are bidirectional we can divide any problem instance

into two subproblems, one containing routes moving to the right and one

containing routes moving to the left and solve them separately.

Let ti be the time distance from node i to i + 1 for i = 1, . . . , n − 1. In

the case of chain networks, the time distance between two nodes i and j is

therefore:

τ(i, j) =
j−1
∑

k=i

tk . (6.1)

Our algorithm for PMS in chains makes use of the fact that PC can be

solved optimally for chain networks. The description of the algorithm is

presented in Algorithm 10.

Theorem 6.3. Algorithm 10 computes an optimal solution for PMS in chains.
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Figure 6.1: An instance of PMS on a chain network.

Proof. Let r and r ′ be two intersecting routes and without loss of generality

assume that s(r ′) ≤ s(r). The first point of their common section is s(r)
and their headway at s(r) is:

d(r, r ′, s(r)) = min
{(

stime(r ′) + τ
(

s(r ′), s(r)
) − stime(r)

)

modT,
(

stime(r) − (

stime(r ′) + τ
(

s(r ′), s(r)
)))

modT
}

.
(6.2)

Note that

stime(r ′) + τ
(

s(r ′), s(r)
) − stime(r) = timeslot(r ′)+

τ(0, s(r ′)) + τ(s(r ′), s(r)) − (timeslot(r) + τ(0, s(r))) =

timeslot(r ′) − timeslot(r) ,

(6.3)

therefore

d(r, r ′, s(r)) = min {(timeslot(r ′) − timeslot(r)) modT,

(timeslot(r) − timeslot(r ′)) modT } .
(6.4)

Since the difference between any two time slots is at least T

L
and T

L
is an

upper bound for the value of any feasible solution, the solution returned

by the algorithm is optimal.

Example 6.4. Consider the instance illustrated in Figure 6.1. The maximum

congestion is L = 3 and as a result the path coloring algorithm will yield a

solution with 3 colors. The time slots corresponding to these colors are: 0,
T

3
and 2T

3
. Assume that routes r3 and r4 are assigned time slot 0, route r2

is assigned time slot T

3
, and route r1 is assigned time slot 2T

3
. According to

Algorithm 10, stime(r1) = 5T

6
, stime(r2) = T

3
, stime(r3) = 0, and stime(r4) = 2T

3
.

Observe that on edge (1, 2) the three intersecting routes r1, r2, and r3 have

headway at least T

3
, which is optimal. Furthermore, route r1 reaches node 3

at time T

3
(‘‘wrapping around’’ the end of the time period), thus also having

headway T

3
from r4.
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Algorithm 11 An algorithm for PMS in spider networks

Input: an instance 〈G, t, T,R〉 of PMS, where G is a spider

1: Compute a path coloring of routes with exactly L colors from {0, . . . , L−
1}. Let color(r) denote the color assigned to route r.

2: Set t = T

L
and define L time slots as follows: 0, t, 2t, . . . , (L − 1)t.

3: Assign time slots to routes according to the coloring obtained in step 1,

namely timeslot(r) := color(r) · t.
4: For each route r passing through the central node, set starting time

stime(r) = (timeslot(r) − τ(0, s(r))) modT .

5: For each route r confined in a single leg and directed towards the central

node, set starting time

stime(r) = (timeslot(r) − τ(0, s(r))) modT .

6: For each route r confined in a single leg and directed away from the

central node, set starting time

stime(r) = (timeslot(r) + τ(0, s(r))) modT .

6.4.2 An Algorithm for Stars and Spiders

Given an instance of PMS on a star or a spider, we will utilize an optimal

path coloring of the given instance in order to produce an optimal time

schedule. Note that an optimal path coloring can be computed by an exact

algorithm for spiders which can be obtained by appropriate combination

of a known exact algorithm for stars and the greedy algorithm for chains.

We should note that some routes may be confined in one of the spider’s

legs while others may be directed from one leg to another.

Theorem 6.5. Algorithm 11 computes an optimal solution for PMS in spi­

ders.

Proof. We will first prove the claim for the case where the spider is a star.

Let r and r ′ be two intersecting routes. Therefore they receive different

colors, hence also different time slots. There are two cases: either s(r) =
s(r ′) or e(r) = e(r ′). In both cases, it suffices to examine their headway at

the central node. Each route arrives at or departs from the central node at

time equal to its time slot. Therefore their headway is a nonzero multiple

of t = T

L
, which is an upper bound for OPT.
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In a general spider network, we consider two cases. For two intersecting

routes that pass through the central node, we can use the same argumen­

tation as above for star networks. For two intersecting routes that lie in

the same leg, the proof is similar to the proof of Theorem 6.3 for chains

since it can be shown that the same properties hold considering either the

central node or the tip of a leg as the first node of the chain (possibly with

an appropriate time shift).

6.5 PMS in Ring Networks

In the case of ring networks, that is, networks which consist of a single

cycle, we may assume that all trains travel in the same direction (clockwise,

without loss of generality), for the same reasons as for chains. Nodes are

labeled by picking one arbitrarily and labeling it 0, then labeling every

other node 1, . . . , n−1 starting from the neighbor of node 0 in the clockwise

direction. We define τ(i, j) as the time distance from node i to node j in the

clockwise direction. We also define the ring perimeter C as the total time

needed to travel around the ring.

For ring networks we can distinguish between two cases, depending on

whether the ring perimeter C is an integer multiple of the period T or not.

In the following two sections we will analyze these cases.

6.5.1 The Case C ≡T 0

Theorem 6.6. An instance of PMS in a ring with C ≡T 0 admits a solution

of headway at least T

k
if and only if the corresponding PC instance can be

colored with at most k colors.

Proof. First, assume we are given a coloring of the routes with at most k

colors. We can produce the desired schedule by using Algorithm 10 for

PMS in chains, starting from Step 2 and using k instead of L. Let r and r ′

be two intersecting routes; without loss of generality assume that s(r ′) is

closer to 0 than s(r) in the clockwise direction. Because C ≡T 0, it can be

shown that it suffices to check their headway on only one of their common

segments, even if there are two such segments.

Following similar arguments as those in the proof of Theorem 6.3, it

can be shown that the headway is:

min{(timeslot(r)− timeslot(r ′)) modT, (timeslot(r ′)− timeslot(r)) modT } ≥ T

k
.

(6.5)
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For the inverse direction, suppose we have a schedule for the PMS

instance with headway at least T

k
. We will show how to obtain a coloring

with k colors for the corresponding PC instance. For each route r, let

timeslot(r) = (stime(r) − τ(0, s(r))) modT . Assign to r the color w − 1, where

w is the smallest integer such that timeslot(r) < w · T

k
. Since w ranges from

1 to k and for any two intersecting routes r and r ′ their timeslots differ by

at least T

k
, this is a valid coloring.

Corollary 6.7. PMS in rings is NP­hard.

Proof. We give a reduction from the decision version of PC in rings to the

decision version of PMS in rings. PC is known to be NP­hard in rings [39].

Suppose we are given an instance of PC in a ring with n nodes and a path

set P, asking if P is colorable with k colors. We construct an instance

of PMS in a ring with n nodes, routes identical to the paths in P, inter­

station distances of one time unit and T = n, asking if it is possible to

achieve an objective function value of T

k
. Clearly, the corresponding PC

instance for the PMS instance we produced is the original PC instance.

Therefore Theorem 6.6 applies, implying that the original PC instance can

be colored with k colors if and only if a solution of value T

k
can be achieved

for the PMS instance.

At a first glance Theorem 6.6 seems to imply that a ρ­approximation

algorithm for PC would give a 1

ρ
­approximation algorithm for PMS. How­

ever, this is true only in the case that the optimal solution for the PMS

instance divides exactly the period T . The following example, illustrated

in Figure 6.2, shows that in general the approximation obtained is smaller

than 1

ρ
.

Let us denote by OPTPMS the value of an optimal solution of an instance

of PMS and by OPTPC the cost of an optimal solution of the corresponding

PC instance. We will present an infinite family of PMS instances in rings

with C ≡T 0 for which OPTPMS is strictly greater than T

OPTPC
, and is in fact

asymptotically equal to T

OPTPC−1
. In this case we cannot directly utilize the

approximation guarantee provided by an algorithm for PC to achieve an

equivalent (inverse) guarantee for PMS.

Consider a ring of 2n nodes with time distances between successive

nodes equal to 1 and time period T = 2n. The instance also consists of a

set of 2n − 1 routes r1, . . . , r2n−1 with s(ri) = i − 1, i = 1 . . . 2n − 1, routes

r1, . . . , r2n−2 traveling across two edges and route r2n−1 traveling across three

edges. The maximum congestion of this instance is L = 2. It is not hard to

see that we need at least 3 colors to solve the corresponding PC instance.

We will present a solution that achieves a minimum headway of n − 1,
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Figure 6.2: An infinite family of PMS instances in rings, in which a ρ­approximate

solution for PC does not yield an 1
ρ
­approximate solution for PMS.

which is strictly greater than T

3
=

2n

3
for n > 3, and is asymptotically equal

to T

2
= n for large n.

Assign to each even­numbered route r2i starting time stime(r2i) = i +

τ(0, s(r2i)) and to each odd­numbered route r2i+1 starting time stime(r2i+1) =
n + i + τ(0, s(r2i+1)). The headway between an even­numbered route r2i and

the succeeding route r2i+1 is equal to n, while the headway between an

odd­numbered route r2i+1 and the succeeding even­numbered route r2i+2

is equal to n − 1. Finally the headway between r1 and r2n−1 is also n − 1.

Therefore this solution achieves the desired headway.

The following theorem shows that it is still possible to use an approx­

imate solution to PC in order to achieve an almost as good approximate

solution for PMS.

Theorem 6.8. A ρ­approximation algorithm for PC in rings implies an
(

1

ρ

L

L+1

)

­

approximation algorithm for PMS in rings with C ≡T 0.

Proof. We will use the algorithm described in the proof of Theorem 6.6. We

observe that OPTPMS < T

OPTPC−1
because a solution of PMS of value T

OPTPC−1

would lead to a coloring with only OPTPC−1 colors by Theorem 6.6. Recall

also that OPTPMS ≤ T

L
.

A ρ­approximation algorithm for PC returns a solution SOLPC ≤ ρ ·
OPTPC. By Theorem 6.6 we can compute a solution for PMS of value

SOLPMS =
T

SOLPC
≥ 1

ρ
· T

OPTPC
. By the observations above it turns out that:

SOLPMS ≥
1

ρ
· T

T

OPTPMS
+ 1
=

1

ρ
· T ·OPTPMS

T +OPTPMS
≥ 1

ρ
· L

L + 1
·OPTPMS . (6.6)
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0

r2

r1

u

Figure 6.3: An example showing that the ‘‘path coloring’’ technique does not work

for rings with C .T 0. Assuming τ(0, u) = T and τ(u, 0) = T
2
, the path coloring

technique would assign time slots 0 and T
2

to routes r1 and r2 respectively and the

two routes would collide at node 0 at any time which is an integer multiple of T .

Note that the family of instances presented above shows that the anal­

ysis of Theorem 6.8 is tight: the optimal solution is almost T

2
= n and

the solution produced by directly exploiting an exact solution to PC is
2n

3
=

L

L+1
n.

Corollary 6.9. There is a
(

2

3
· L

L+1

)

­approximation algorithm and a
(

0.73 · L

L+1

)

­

approximation randomized algorithm for PMS in rings with C ≡T 0.

Proof. By using Theorem 6.8 and the deterministic approximation algo­

rithm of Karapetian [45] and the randomized approximation algorithm of

Kumar [48] that achieve ratios 3

2
and 1.368, respectively.

6.5.2 The Case C .T 0

Consider a ring network with n nodes and two routes r1, r2 with 0 = s(r1) <

e(r2) < s(r2) < e(r1) and τ(s(r1), s(r2)) = x. Let t1, t2 be the moments in time

where the trains traveling along r1 and r2 arrive at node 0. These trains

reach node s(r2) at times (t1 + x) modT and (t2 −D + x) modT respectively,

where D = C modT . As a result, in order to maximize the minimum

headway between the two trains, we have to take into account the following

time differences: (t1 − t2) modT , (t2 − t1) modT , (t1 − t2 + D) modT and

(t2 − t1 − D) modT . It is now clear that the algorithm of Theorem 6.6

may produce an infeasible solution if D = (t2 − t1) modT (see Figure 6.3).

Therefore, we need a new algorithm for this case.
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We propose Algorithm 12 for PMS in rings where C .T 0. In order to

show the approximation ratio of Algorithm 12, we will need the following

two lemmata.

Lemma 6.10. Any two routes r, r ′ that belong to Pc have headway at least
T

5L ′ . The same holds for any two routes that belong to P0.

Proof. First, observe that any two routes in Pc have headway at least T

5L ′

in a scheduling produced by the algorithm, because their arrangement is

essentially the same as in the case of a chain network.

Consider now two routes r, r ′ in P0 to which the algorithm has assigned

time slots timeslot(r) and timeslot(r ′), respectively. Suppose, without loss of

generality, that s(r ′) > s(r). It is clear that since they are assigned different

time slots these two routes cannot have a headway of less than T

5L ′ at node

0 and therefore neither at node s(r ′). We now need to show that their

headway is not less than T

5L ′ at node s(r). We should examine two cases

depending on whether e(r) < e(r ′) or not.

Suppose e(r ′) > s(r). In that case, e(r ′) > e(r) and r ′ will be as­

signed a time slot before r. Route r ′ will reach s(r) at time stime(r ′) +
τ(s(r ′), 0) + τ(0, s(r)) ≡T timeslot(r ′) + τ(0, s(r)). Route r departs from s(r) at

time stime(r) = timeslot(r)− τ(s(r), 0) ≡T timeslot(r)−D + τ(0, s(r)). However,

the headway between timeslot(r ′)+D and timeslot(r) is at least T

5L ′ , because

r ′ was assigned a time slot before r and timeslot(r ′) + D was excluded from

S0.

Let us now assume that e(r ′) < s(r). In that case the two routes have

only one common segment that starts at s(r ′) and contains 0. Therefore,

the fact that they have been assigned different time slots suffices to guar­

antee that their headway is at least T

5L ′ .

Lemma 6.11. Any two routes r ∈ Pc and r ′ ∈ P0 have headway at least T

5L ′ .

Proof. We need to show that their headway is at least T

5L ′ only at nodes

s(r) and s(r ′) since these are the first nodes of the two possible common

segments of r and r ′.

Let t0 = timeslot(r ′) be the time when r ′ passes through node 0. r ′

reaches s(r) (if s(r) is contained in r ′) at time (τ(0, s(r)) + t0) modT , and,

since stime(r) = (τ(0, s(r)) + timeslot(r)) modT , if r and r ′ had a headway

of less than T

5L ′ then they would have been assigned the same time slot,

which is a contradiction.

Route r arrives at s(r ′) at time stime(r) + τ(s(r), s(r ′)) = timeslot(r) +
τ(0, s(r ′)) while r ′ departs from s(r ′) at time stime(r ′) = timeslot(r ′)−τ(s(r ′), 0)
≡T timeslot(r ′)−D+ τ(0, s(r ′)). If r and r ′ had headway of less than T

5L ′ , then



Algorithm 12 An algorithm for PMS in ring networks with C .T 0

Input: an instance 〈G, t, T,R〉 of PMS, where G is a ring with C .T 0

1: Split R into two sets P0 and Pc. P0 contains routes that pass through

node 0 (i.e., having node 0 as an intermediate node) and Pc = R \ P0.

Let L0 = |P0| and Lc be the maximum congestion with respect to Pc.

2: Define t = T

5L ′ and two sets of available time slots as follows: S0 =

{0, t, 2t, . . . , (5L ′ − 1)t}, Sc = ∅ where L ′ = max{L0, Lc}.
3: Assign colors to routes of Pc by using an algorithm for PC in chains.

4: for all colors k, 1 ≤ k ≤ Lc do

5: if Sc , ∅ then

6: Select an item l from Sc.

7: else

8: Select an item l from S0.

9: end if

10: Set timeslot(k) = l.

11: for all routes r colored with color k do

12: Assign departure time stime(r) = timeslot(k) + τ(0, s(r)).
13: end for

14: Remove l from Sc and S0.

15: Move all time slots whose difference from l+D is smaller than t from

S0 to Sc.

16: end for

17: Sort routes in P0 in non­increasing order of ending point.

18: for all r ∈ P0 in the sorted order do

19: Select an item l from S0.

20: Set timeslot(r) = l.

21: Set stime(r) = (timeslot(r) − τ(s(r), 0)) modT .

22: Remove l from S0.

23: Remove from S0 all time slots whose difference from l +D is smaller

than t.

24: end for
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timeslot(r ′) would have a difference of less than T

5L ′ from timeslot(r)+D which

is also a contradiction, since all time slots which have a difference of less

than T

5L ′ from timeslot(r) + D were excluded from S0 when r was assigned

its time slot.

Theorem 6.12. Algorithm 12 is a 1

5
­approximation algorithm for PMS in

rings with C .T 0.

Proof. First, let us observe that 6L ′ time slots suffice to arrange the depar­

ture times of all routes. As far as routes in Pc are concerned, each one

uses one time slot and excludes at most two others from S0, in total using

at most 3Lc time slots. Similarly, routes in P0 use at most 3L0 time slots.

A more precise analysis reveals that at most 2Lc time slots are used by

Algorithm 12 to arrange routes in Pc, provided that Lc ≥ 3. Define for every

color k used in the first phase of the algorithm cost(k) to be the number of

items removed from S0 for that color. If Sc , ∅ when color k is examined,

then cost(k) ≤ 2. If Sc = ∅, this implies that cost(k) = 3, but cost(k′) ≤ 1 for

color k′ which was examined immediately before k. Therefore the average

cost for k and k′ is at most 2. Notice that in the special case of the first

color examined, the three time slots that must be excluded from S0 may

be used to accomodate the next two colors giving a total costof 6 for the

three colors. As a result, the average costfor all of the colors is at most 2,

leading to at most 2Lc time slots being removed from S0 for routes in Pc.

The difference between time slots in Algorithm 12 is T

5L ′ . We only need

to show that the headway between any two intersecting routes at any point

is not smaller than the difference of the corresponding time slots. Since the

algorithm assigns different time slots to intersecting routes, the minimum

headway is at least T

5L ′ . The three possible cases for two routes r and r ′ of

the ring have been examined in Lemmata 6.10 and 6.11. The proof is now

complete.

6.6 PMS in Tree Networks

In the case of tree networks one might attempt to use Algorithm 11 for

spiders, after picking an arbitrary node 0. However, this idea may lead to

the production of a solution with zero headway. Figure 6.4 illustrates this

situation.

However, if we consider tree networks in which the time needed to travel

along each edge is a multiple of T

2
it turns out that we can use a simple

variation of Algorithm 10. In these networks the following useful property

holds.
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Figure 6.4: An example showing that Algorithm 11 for spiders does not work for

trees. Assuming that route r1 is assigned time slot 0 and route r2 is assigned time

slot T
3
, route r1 collides with route r2 at node u at time T

6
.

Remark 6.13. For any three nodes a, b, c: τ(a, b) + τ(b, c) ≡T τ(a, c).

Theorem 6.14. An instance of PMS in a tree where the time needed to

travel along each edge is a multiple of T

2
admits a solution of headway at

least T

k
if and only if the corresponding PC instance can be colored with at

most k colors.

Proof. For the ‘‘if’’ direction we can produce the desired schedule by picking

a node arbitrarily, labeling it 0, and then using Algorithm 10 for PMS in

chains, starting from Step 2 and using k instead of L.

Assume there are two routes r and r ′ intersecting on a single edge e =

(u, v). Route r reaches node u at time (timeslot(r)+τ(0, s(r))+τ(s(r), u)) mod
T = (timeslot(r) + τ(0, u)) modT . By the same reasoning route r ′ reaches

node u at time (timeslot(r ′)+ τ(0, u)) modT . Hence, the headway of the two

routes is equal to (timeslot(r ′) − timeslot(r)) modT which is clearly at least
T

k
.

For the ‘‘only if’’ direction, we pick an arbitrary node 0 and, for each

route r, we consider the value timeslot(r) = stime(r) − τ(0, s(r)). Following

the proof of Theorem 6.6 and using Remark 6.13, we obtain a valid coloring

with k colors for the original PC instance.

Corollary 6.15. PMS in trees is NP­hard.

Proof. We will reduce the decision version of PC in trees to the decision

version of PMS in trees. Given a PC instance and an integer k we will

construct a PMS instance with time distances between nodes equal to one
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time unit and period T = 2. Theorem 6.14 implies that it is possible to

achieve a solution of value at least T

k
if and only if the original PC instance

can be colored with at most k colors.

Theorem 6.16. A ρ­approximation algorithm for PC in bidirectional trees

implies a
(

1

ρ

L

L+1

)

­approximation algorithm for PMS in trees where the time

distances between nodes are multiples of T

2
.

Proof. The key observation is that if OPTPMS ≥ T

OPTPC−1
, then by using the

algorithm of Theorem 6.14 we could achieve a coloring with OPTPC − 1

colors, which is a contradiction. Therefore OPTPMS < T

OPTPC−1
and the rest

of the proof follows along the lines of the proof of Theorem 6.8.

Corollary 6.17. There is a
(

3

5

L

L+1

)

­approximation algorithm for PMS in trees

where the time distances between nodes are multiples of T

2
.

Proof. By using Theorem 6.16 and the 5

3
­approximation algorithm of Er­

lebach et al. [34].

Similarly to the case for rings with C ≡T 0, the L

L+1
factor can be justified

by presenting an infinite family of instances having OPTPMS strictly greater

than T

OPTPC
and asymptotically equal to T

OPTPC−1
. Consider a chain of 2n + 2

nodes numbered 0, . . . , 2n + 1, with additional edges sticking out of nodes

1 and 2n connecting them to nodes v and v′ respectively, a time period

T = 2n and all edges having time distance T

2
= n. The instance consists

of the following 2n + 3 routes: rA from v′ to v, rB from 0 to v, rC from v′

to 2n + 1 and ri , i = 0, . . . , 2n − 1 from i to i + 2, resulting in a maximum

congestion of L = 2.

The corresponding PC instance requires 3 colors but there is a PMS

solution that achieves a headway of n − 1, which is greater than T

3
for

n > 3. Since the time distance of every edge is a multiple of T

2
we can pick

an arbitrary root, assign a time slot to each route and set the starting time

as the sum of the time slot and the distance of the starting node from the

root. As shown above, this ensures that the headway between intersecting

routes is the difference of their respective time slots.

Set timeslot(rA) = 0, timeslot(rB) = timeslot(rC) = T

2
= n. For the even­

numbered routes set timeslot(r2i) = i and for the odd­numbered routes

timeslot(r2i+1) = T

2
+ i = n + i. It is clear that this arrangement achieves a

headway of T

2
between rA,rB and rA,rC, and a headway of at least n−1 = T

2
−1

between successively numbered routes. In addition timeslot(r2n−1) = 2n −1

leading to a headway of n − 1 between rC and r2n−1 as well. Therefore, this

is a solution which achieves a headway of T

2
− 1. For an illustration see

Figure 6.5.
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Figure 6.5: An infinite family of PMS instances in trees, in which a ρ­approximate

solution for PC does not yield an 1
ρ
­approximate solution for PMS.

The infinite family of PMS instances presented shows that the analysis

of Theorem 6.16 is tight: the optimal solution is almost n while the ap­

proximate solution produced by exploiting an exact coloring is 2n

3
=

L

L+1
n.

6.7 Conclusions

We have introduced the Periodic Metro Scheduling problem, which aims

at generating a periodic timetable for a given set of routes and a given time

period, in such a way that the minimum headway is maximized.

We have presented exact algorithms for chain and spider networks,

and constant ratio approximation algorithms for ring networks, as well as

for a special class of tree networks. Some of our algorithms make use

of a reduction to Path Coloring. We have left open the question of the

approximability of PMS in general tree networks. Another interesting open

question is to study the model where only the end stations of a route are

given and one should determine both a path for each route and a departure

time; this model applies to topologies that contain cycles, such as rings,

grids and trees of rings.
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[15] Vittorio Bilò, Michele Flammini, and Luca Moscardelli, On Nash equi­

libria in non­cooperative all­optical networks, STACS (Volker Diekert

and Bruno Durand, eds.), Lecture Notes in Computer Science, vol.

3404, Springer, 2005, pp. 448–459.
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