©
/2

£T508
E
o
'ﬁ:,‘

»
S5
)

£

3

nVPPOPO

POMHOEVS

s
pt "
(Bl

i
ny

Qw‘
S

v

E®NIKO METZOBIO IIOAYTEXNEIO
TMHMA HAEKTPOAOT'ON MHXANIKON KAI MHXANIKQN YIIOAOTIETQN

TOMEAX TEXNOAOTTAY TTAHPO®OPIKHYE KAI YITOAOTTETQN
EPTAXTHPIO AOTTKHZ KAI EINIETHMHE YITOAOTTEMQN (Corelab)

Apopodoynon Kat avaBeon PKouUg KUPRATOG

O€ OMTIKA SikTua

AIAAKTOPIKH AIATPIBH

Tou

EvayysAou I'. Mapna

ABnva, OxktmBplog 2009

EOGNIKO METZOBIO IIOAYTEXNEIO
TMHMA HAEKTPOAOT'QGN MHXANIKQN KAI

MHXANIKQN YITOAOTTETQN
TOMEAZ TEXNOAOTIAZ [TAHPO®OPIKHE KAI YITOAOTIZTQN

EPTAXTHPIO AOTTKHZ KAI ETIIE=THMHY YITIOAOTTEMQN

3 (3
e
K

s\ ¥
32
Vo
NPOMHOEVS -
=i’
VP PoPOSs

ta,

Apopodoynon Kat avadeon prjKoug KUPATOg
ot onuikd §iktua

AIAAKTOPIKH AIATPIBH

Tou

Euayyelou I' Mnapna

ZupbouAsutiky Emitponn: Euotabilog Zdayog
TipoAéwv ZedAng
C'ecdpylog KoAétoog

EykpiBnke ano myv entapedn e§e1a0TIKY EMMTPONN

TwpoAéwv Zeddng
Kabnynug EMII

Euotdbiog Zdaxog
Kabnynug EMII

Tewpyrlog KoAétoog
Av. Kabnynug EMII

HAlag Koutoourtiag
Kabnynujg EKITA

Ap1oteidbng IMayouptdng
Aéxtopag EMIT

Ioavvng MnaAng
Av. Kabnynu)g OTIA

Anurtplog Potdxrng
Aéxtopag EMII

ABnva, OxktmBplog 2009.

EvayyeAog I'. Mnapnag
Adaxktop HAektpodoyog Mnxavikog kat Mnyxavikog Yrodoyiotwv E.M.II.

© 2009, Eudyyedog I'. Mnapndg (Evangelos G. Bampas).
Me erm@uladn navidg dikawwpatog. All rights reserved.

Anayopevetal n avuypagr), anobrjreuon kat Siavopr] tng rnapovoag epyaoiag, €§
O0AOKA|POU 1] THNHATOG AUTHG, YO €UITOPKO OKOro. Emurpénetat n avatvneon,
aroBnNKeUoT KAl §1avopr| yia oKoTo 11 KEPSOOKOITIKO, EKITAIBEUTIKLG 1] EPEUVNTIKEG
@uong, umod v rPolnobeon va avapépetat 1 iy npoéleuong Kat va datnpeitat to
napov pnvupa. Epeotpata mou apopouv T Xpron g £pyaciag yia KepSooKOoImKo
OKOTIO TIPETIEL va aneubuvovial otov ouyypadea.

Ot amoyeig Kat Td CUPIMEPATHATA TTOU TTEPIEXOVIAL O AUTO TO £YYPado eKPpaouv tov
ouyypadéa Krat dev mpéretl va eppnveudel o1l avirpoonievouv 11§ erionpeg 9éoeilg
tou EBvikou MetooBiou IMoAutexveiou.

MepiAnyn

MelAetape poviéda yia Spopoddynon kat avabeon PrKoug KUPATOG OE OITtL-
KA biktua, pe otdyxo va KataderBouv 1610tteg TV v AOY® HOVIEA®V ITOU
mpénetl va AapBavoviat Umoytv Katd v UAOIOiNon KAl aVAITTuSH OITKOV
diktuwv otnv npadn. IMo ocuykekpipéva, mPOTeEivovial IIPOCEYYIOTIKOL aAyo-
P1Op01 yla T PEYI0TONOoinon ToU MANO0US TOV 1KAVOITOIOUHPEVOV ALTI|0E®V OF
orttikd Siktua tortoAoyiag daxktudiou 6rmou o apiBpog TV PNK®V KUPATOG a-
va iva 6idetat g pépog g e10060u. Ot mpotevopevol aAyoptdpot, ot oroiot
£€XOUV 0A0l PPAYHEVO AGYO TPOCEYYIONG Ot XEPOTEPT) MEPIMI®OT), OUYKPI-
vovtatl Kat repapatikd pe 1én yveootoug ano 1) BBAoypadia adyopidpoug.
AT 1 OUYKP101 MPOKUITTEL OTL 0 AAYOplOp0g Pe 1oV e@pnTtikd KAAUTEPO
Aoyo mpoogyylong arodidel pev KaAutepa arnod ToUg UTIOAOUTOUS aAdd Ka-
Tavadovel urtepBoAIKA TIOAU Xpovo. AvtiBeta, £vag aro ToUg IPOTEWVOHEVOUS
aAyop1Opoug rapdyet oAU 1KAVOITOUTIKEG AUOELG 0€ XPOVO ITOU £ival APKETEG
1a8e1g peyeboug NikpOTEPOG Ao tov XpOvo Tou KaAutepou adyopibpou.

Erurm\éov, peAetdatal pia yevikeuon tou mpoBArpatog orou kKabe aitnon
ermKowvaviag €xet éva dedopévo rEPHog, Kat {nrteitat n PeyloTOnoinon Tou
OUVOAIKOU KEPOOUG TV 1KAVOITOI0UHEVOV attrjoewv. [Ipoteivetal évag egat-
PETIKA YP1YOPOG, KaBapd ouviuaotikog Katl EUKOAOG otnv UAoroinon aAyo-
p1Opog yia 1o mpoéBAnpa auvto, 0 oroiog £xel XEPOTEPO AOYO ITPOOEYYoNG
and évav 1dn yvooto ailyopldpo, opng KatadEpvel va rmapdyel aviayoviott-
KEG AUOEIG KAl PAAIOTA O OPIOPEVES TIEPUTIOOELS KAAUTEPEG ATIO OAOUG TOUG
aAdoug adyopiBpoug rou cupneptdapBavoviat ot peA€tn. Amo v mepa-
PaTIKY) OUYKP101) MPOKUITTEL TO CUNITEPACHA OTL O TIPOTEVOHEVOSG aAyop1Op0g
artotedel 1davikn ermdoyr) otav anattouvial AUoelg oto IIPoBAnpa og oUVIOpo
XPOVIKO draotnpa.

MeAetoviatl rmatyviofepnuikd poviéda yia) 6popoAdynon Kat my ava-
Yeon pnkev KUpatog os ornrikd diktua moAdarmiev wov. Eidikotepa, ma-
pouotddetatl pia mAnpng avdaiuorn Tou KOOoToug g avapyiag otav ot naikteg
EMAEYOUV £YMIOTIKA TO PNKOG KUpatog 1101 dpopodoynpévev attr|oemv em-
Koweviag, xpeovovratl pe Bdorn v péyilotr moAAanAdtnta tou PrKoug Kupa-
TOG IOV eTEAEEAV KATA PKOG TOU F1OVOTTATIOU OTO 011010 £Xe1 §popodoynOei 1)
aitnor), KAt 10 KOW®VIKO KOotog kKabopidetal amod v péyilotn noAdaniotnta

HINKOUG KUPATog Tou epgavidetatl oe oAorANpo 1o diktuo. Anodeikvustatl ot
10 Maiyvio Tou opidetal P& autov ToV TPOTI0 CUYKAIVEL TIAVIOTE O 100pPOTiA
Nash oe nenepaopévo aptOpo Kivrjoewv, eve nipoteivoviat alyopifpot yia tov
UTIOAOY1010 Kowvavika BéAtiotng woopportiag Nash kat mpooeyyloukd BEAtt-
otng toopportiag Nash oe ouykekpipéveg tormoAoyieg. Armodsikvuetal ot 10
KOOTOG g avapyiag propet va yiver aubaipeta peyddo akopn kat oe dev-
dpikég tomodoyieg HikTUwV e peyloto Pabuod tpia. 'Opwg, oty nepintoon
Tou daxtuldiou kat g aAuoidag, To KOOTog NG avapyxiag @pdoostat ano pia
otaBepd av 1o mAnbog tev d1abéopnv pnKev Kupatog dev eivat moAu peydlo
0 OX£0T 1€ TO (POPTIO ToU §1KTUOU, UnoOeor Mou KAAUITIEL OUCIACTIKA TNV
meloYneia TV MEPUTIOOL®V ITOU UITOPEL va ERPAVIOTOUV OTtnyV IPAgn.

[Tpog eméKTAOr TOU MPONYOUHEVOU HOVIEAOU, TIPOTEIVETAL £vaA YEVIKOTEPO
rAaiolo pedéng v rmatyviov eyoiotkng dpopodoynong kat avabsong pn-
KOV KUPATOG 0g OMUKA SiKtua IMOoAAAA®V VeV, U d1apopeg OUVAPTIOELS
KOOTOUG TRV IAIKTIOV KAl UTTO H1aPopeg OUVAPTIOEIS KOIVEOVIKOU KOOTOUG. A-
rode1kvUovIal Ave Kal KAT® @PAyHdld ylda 10 KOOTog tng avapyiag tv &v
Adye naryviev.

TéAog, peAetdtal 1) MOAUTAOKOTITA TOU IIPOBATIATOG XPOVIKOU IIPOYPA-
Patiopou evog ouvoAou Spoo0A0YieV ITOU MPETEL va eKTEAOUVTAL ITEPLOOIKA pe
doopévn ouyxvotnta oe éva HiKTuo pPetapopmv, £101 WOTE va PEY10TOITo0uUVIal
o1l arootdoelg aopaldeiag petaiy H1adoX1KOV OXNUATOV TTOU XP1O1I0II010UV
10 1610 THNpa tu diktvou. Ta v emiAuon autou Tou IPoBANATOg Arto-
dewkvietal kat aglomoteital n ouvdeorn Tou pe éva mPoBAnua Xp®HATIoPoU
HOVOITAaTI®V ITOU £XEl XPNotporo0ei Katd KOpov yla tr) povieAonoinor mpo-
BAnnatewv dpopoddynong kat avdbeong PNKOV KUPATOG O OmMuKA Sikrua.
'Eto1, katadeikvuetal 1 YEVIKOTA TV YPAPOOERPNTIKOV HOVIEAQV XpOUATL-
OO0V POVOTTATI®V TToU PeAethiOnkav ot S1atpibr).

A€EeIg-kKAeIBIA oruikd diktua, ormuikda Siktua modAardev 1vev, TToAuTAeSi-
a dlaipeong ouxvotIag, XPOWHATIONOG POVOIIATI®OV, XPOHATIONOG TOE®V, TT0-
AUXPOPATIONOG POVOITATIOV, 1KAVOTTOiNon altoe®v, SPOoAoOyn o, avadeon
PIKOUG KUPATOG, EYM10TIKT §pO0AGYN 0T, EYOI0TIKY avABeon NrKoug Kupa-
T0G, PN ouvepyatika rnatyvia, woopportieg Nash, kéotog avapyiag, xpovorpo-
YPAPHATIONOG TPEVRV, XPOVOIIPOYPAPRHATIONOS AVEKTIKOG 08 KaBuotepr)oeg,
EPL0H1KA HPOPOAOY1A, TIPOOEYY10TIKOT aAyopiOpiot

Abstract

We study models for routing and wavelength assignment in optical net-
works, aiming at showing properties of these models that must be taken
into consideration when optical networks are deployed in practice. More
specifically, we propose approximation algorithms for maximizing the num-
ber of satisfied requests in optical ring networks where the number of
available wavelengths per fiber is given as part of the input. The pro-
posed algorithms, which all possess a bounded approximation ratio, are
also compared experimentally with other algorithms already known from
the literature. From the comparison, we conclude that the algorithm with
the theoretically best approximation ratio produces the best solutions but
consumes too much running time. On the contrary, one of the proposed al-
gorithms produces very satisfactory solutions with a running time several
orders of magnitude faster than the time of the better algorithm.

Moreover, we study a generalization of the problem where every com-
munication request is associated with a given profit, and we seek to max-
imize the total profit of satisfied requests. We propose an extremely fast,
purely combinatorial, and easily implemented algorithm for this problem,
which has worse approximation ratio than an already known algorithm,
but manages to produce competitive solutions—in some cases, it produces
better solutions than all the other algorithms included in the study. From
the experimental comparison, we conclude that the proposed algorithm is
a decent choice whenever we require decent solutions in limited running
time.

We also study game-theoretic models for routing and wavelength as-
signment in multifiber optical networks. We present a full analysis of the
price of anarchy when players selfishly choose the wavelength of already
routed communication requests, they are charged according to the max-
imum fiber multiplicity incurred by their choice of wavelength, and the
social cost is determined by the maximum wavelength multiplicity that
appears at any edge of the network. We prove that the game thus de-
fined always converges to a Nash equilibrium in a finite number of moves,
and also propose algorithms for efficiently computing socially optimal and

approximate Nash equilibria in specific network topologies. The price of
anarchy can grow unbounded even in tree networks with maximum de-
gree three. However, in the case of chains and rings, the price of anarchy
is bounded by a constant when the number of available wavelengths is
not too large compared to the load of the network—an assumption which
covers most cases that can appear in practice.

Extending the previous model, we propose a general framework for
studying selfish routing and wavelength assignment games in multifiber
optical networks, under player cost and social cost functions. We prove
upper and lower bounds on the price of anarchy of these games.

Finally, we study the complexity of scheduling a set of routes that must
be executed periodically in a transportation network with a given period,
so that the safety distance distance between successive vehicles that use
the same portion of the network is maximized. For solving this problem,
we prove and utilize its connection with a path coloring problem which has
been used extensively for modeling routing and wavelength assignment
problems in optical networks. Thus, we show the generality of the graph-
theoretic path coloring models which we studied in the thesis.

Keywords optical networks, multifiber optical networks, wavelength divi-
sion multiplexing, path coloring, arc coloring, path multicoloring, request
satisfaction, routing, wavelength assignment, selfish routing, selfish wave-
length assignment, non-cooperative games, Nash equilibria, price of an-
archy, train scheduling, delay-tolerant scheduling, periodic timetabling,
approximation algorithms

oty yayid pou, Aéia

NMpoAeydueva

H mapovoa 6watpiBr) eknovnOnke oto Epyaotrplo Aoyikrng kat Emmotung
Yrniodoyiopwv (Corelab) tng £xoAng HAektpodoyov Mnyavikov kat Mnya-
Vikov Yrodoyiotov tou EBvikoy MetodBiou IToAuteyveiou.! To epyaoctrpro
b61ab¢étetl moAuetr) epnelpia oe aAyopOpika Sépata SpopoAoynong kat avdade-
ong PNKoug Kupatog oe ortika diktua. H ouvepyaoia pou pe to epyaotrplo
Sekivnoe pe v ekmovnon g SUMA®PATIKYG Pou gpyaciag yia to Almlepa
HAexktpodoyou Mryavikou kat Mnyavikou YmoAoyiotmv, 10 @Ovoniopo tou
2003. Zin ouvéxela, eixa v TP va Yive 6eKtog oG uroynglog d16axto-
pag uro v eniBAeyn tou Kabnynt EMII k. Z1d6n Zdyou kat amnd to 2005
Sekivnoa va epyalopal oty meploxr Imou topd, TE00EPA XPOvid apyotepd,
artotedel 10 avukeipevo auvtrg g dratpbrg.

A1GpBpwon g AlatpIBAg

To mpwto KeEPAAAI0 XPNOHEVEL WG Pld HIKPI) £10ay®YI 08 dEpata oK@V
diktuev kat 9étet ta npata rpoBAnpata mou 9a pag arnacyoAnoouv apyotepa
otn) Siatpibr).

Zto deutepo KAl 010 TPiTo KEPAAA1O MPOTEIVOUHE TIPOOEYYIOTIKOUG AAyO-
p1Opoug yia poBAnpata BeAtiotng 6popoAoynong Kat avabeong PrKoug Ku-
patog og ortikd §iktua Kat toug ouykpivoupe nelpapatikd pe aAAoug aAyo-
pOpoug nou eivat 1én yveootol and) fBAoypadia.

210 1pito KAl ot0 TETAPTo KeEPAAA1I0 PEeAETAPE TO KOOTOG avapyiag rat-
YVI00£®@PNTIKOV POVIEA®V Yia SpOP0AOYN 0N KAt avadeon NKOUG KUPATOS O
ortuikd Siktua MOAAATIAGV VQV.

10 ¢Kt0 Kat tedevutaio kepddalo aoxolovpaote pe €va poBAnpa ano v
ETUOTAUN HETAPOP®V, TO OTIOI0 HMEAETANE XPNOTHOTIOIOVIAG £va HOVIEAO TIOU

'H 61atp18r) amoteAei unoépyo tou mpoypdppatog IIENEA 03EA/285. To épyo ouyxpn-
patodotribnke ano v Eupenaikr ‘Eveon (Evpenaikéo Koweviké Tapeio) kata 75%, arnd
10 EAAnviko Anpooto (Yroupyeio Avartugng, Fevikn Tpappateia ‘Epsuvag kat TexvoAoyiag)
Kata 25% kat aro tov [Siwtuko Topéa, oto miaiolo tou Mérpou 8.3 tou Emixeipnolakou
IMpoypappatog Aviayeviotikotnra—I” Kowotiko [MAaiowo Zupidng.

EXEL Xpnoporonfel Katd KOPov yia Vv neptypadr) npobAnpdtev BeAtioto-
rnoinong oe orttikd diktua. 'Etotl, katadeikvistatl 1 YevikOta 1oV ypapobe-
PPNTIKOV POVIEA®V XP@HATIONOU POVOITATIOV HE Ta Oroia aoX0AoUpaote ot
6ratpiBn.

Anuooieloeig

Avapépoupe EPEUVITIKEG EPYACIEG TTOU IIPOEKUYPAV KATA T SidpKela g K-
ovnong g dtatpibrg kat dnpootevtnkav oe H1e0vr) ermotnpovikd replodika
1) avakowednkav oe S1e0vr) ouvédpla pe KPITeg.

1. E. Bampas, A. Pagourtzis, and K. Potika: An experimental study of
maximum profit wavelength assignment in WDM rings. Networks,
2009 (to appear).

2. E. Bampas, L. Gasieniec, R. Klasing, A. Kosowski, and T. Radzik:
Robustness of the rotor-router mechanism. OPODIS, Lecture Notes in
Computer Science, Springer, 2009 (to appear).

3. E. Bampas, L. Gasieniec, N. Hanusse, D. Ilcinkas, R. Klasing, and
A. Kosowski: Euler tour lock-in problem in the rotor-router model.
DISC (Idit Keidar, ed.), Lecture Notes in Computer Science, vol. 5805,
Springer, 2009, pp. 421-433.

4. E. Bampas, A. Pagourtzis, G. Pierrakos, and V. Syrganis: Colored
resource allocation games. CTW (Sonia Cafieri, Antonio Mucherino,
Giacomo Nannicini, Fabien Tarissan, and Leo Liberti, eds.), Ecole
Polytechnique and CNAM, 2009, pp. 68-72.

5. E. Bampas, A.-N. Gobel, A. Pagourtzis, and A. Tentes: On the connec-
tion between interval size functions and path counting. TAMC (Jianer

Chen and S. Barry Cooper, eds.), Lecture Notes in Computer Science,
vol. 5532, Springer, 2009, pp. 108-117.

6. E. Bampas, A. Pagourtzis, G. Pierrakos, and K. Potika: On a non-
cooperative model for wavelength assignment in multifiber optical net-
works. ISAAC (Seok-Hee Hong, Hiroshi Nagamochi, and Takuro
Fukunaga, eds.), Lecture Notes in Computer Science, vol. 5369,
Springer, 2008, pp. 159-170.

7. E. Bampas, A. Pagourtzis, and K. Potika: Maximum profit wavelength
assignment in WDM rings. CTW (Giovanni Righini, ed.), University of
Milan, 2008, pp. 35-38.

8. E. Bampas, A. Pagourtzis, and K. Potika: Maximum request satisfac-
tion in WDM rings: Algorithms and experiments. PCI (Theodore S. Pa-
patheodorou, Dimitris N. Christodoulakis, and Nikitas N. Karaniko-
las, eds.), Current Trends in Informatics, vol. A, New Technologies
Publications, 2007, pp. 627-642.

9. E. Bampas, G. Kaouri, M. Lampis, and A. Pagourtzis: Periodic Metro
Scheduling. ATMOS (Riko Jacob and Matthias Muller-Hannemann,
eds.), Dagstuhl Seminar Proceedings, vol. 06002, Internationales
Begegnungs und Forschungszentrum ftir Informatik (IBFI), 2006.

Euxapiorieg

O ermBAénov kadnynmg pou Z1ding Zaxog pou ACKNOoe TePAOoTa EITIPPOT)
H£€0a Aro Td MPOTITUX1aKA ToU Pabrpata oote va aocXoAn0wm teAkd epeuvnTi-
KA pe) Oeopnukr [IAnpodopikr. Eivatl évag sprnveuopévog daockaldog mou
petadidel pe 9épun v aydrn tou yua ta pabnpatkd Kat tmy mAnpopopiKr)
pog 6Aeg TG kateuBuvoelg. O Apng ITayouptdrng avédaBe peydlo pépog tng
eniBAeyng tou H18AKTOPIKOU POU KAl, TAPdA TO PEYAAO QOpTo epyaociag tou,
ftav ntaviote S1abBéoprog yia oudrtnon Kat ouvepyaoia.

Ta péAn g tppedoug cupBouleuTikng erttport)g pou Tipog ZeAAng Kkat
Topyog KoAétoog ntav e§aipetikd ouvepyaoijiol Kab’oAn) diapkela tov pe-
TAMTUX1aK®V pou ortoudav. ITapdAAnAa, anotédeoe 18iaitepn Tipn ya péva n
ouppetoxr) tou HAta Koutoourud, tou I'dvvn MnAn kat tou Anurjtpn Petdkn
OTNV EMTAPEAR €EETACTIKY EMMTPOITT] TOU H18AKTOPIKOU 10U.

Ta péAn tou Corelab ftav 6Aa autd ta xpovia 18avikol ouvepydateg Kat
TOUG €UXAPLOT® Yld TV atpoodalpa rou dnpioupynoav oto epyaotrplo. Eu-
xapote dattépwg v Katepiva Iotika, tov ITétpo Iotika, tov [Tavo Xeida-
pn, tov Niko Aeovdapdo, v I'ewpyia Kaoupn, tov Baoidn Znka, v BdAwa
Mrntoou, tov MixdAn Aapnn, tov Avtovn AX1AAémg, tov Avipéa Ikopmed, tov
‘Apn Tévte, tov INepyo ITeppdako kat tov O®avdaon Atavea.

H épeuva kai, katvenékraor, n oloxkAnpwon tng diatpBng dev Sa rrav
duvatr) xwpig m Ponbela wwv ouvepyat®v pou aro to Corelab: tou Apn
[Mayouptdn), tng Katepivag [otika, g 'ewpyiag Kaoupn, tou MixdAn Aapnn,
Tou Avrpéa I'ropmel, tou Apn Tévte, tou Mwpyou ITiepparou kat tou BaoiAn
Zupykavr. O&A® va avagépe £rmiong ta PEAN Katl EMIOKENTES g opadag
CEPAGE tou LaBRI: Ralf Klasing, David Ilcinkas, Nicolas Hanusse, Adrian
Kosowski, Leszek Gasieniec kat Tomasz Radzik. Toug suxapiot® oAoug yla
TG WPeG TIOU {odewape padli OKEMTOPEVOL OXETIKA Pe Siadopa rpoBAnpata—
dewpw O NTav amo TG o napaAyeylkeg mg {wng pou. e auto 1o onpeio

9a nbelda va euyxaplotjom kat tov 'iavvn Epipn yua tyv Bonbeid tou oto va
ermorePt® v opada CEPAGE yla npaktukn doknor v Avoigr tou 2009.

Euyxapiote ta oupnabr) tetpdnoda Xpuodaepn Zrapoudn, Xrupo Maupo-
ropdorovdo kat @avaon Maxkpr) ya m @Ma toug Kat TG OpopPeg OTLy-
Hég Tou potpadopacte 0Aa autd ta xpovia. O Ioidwpog Zidepng, €KTOg Ao
MOAUTI0G @iAog, urnpée Kat Aypoyog oUPBOUAOG Yla T YPAPEIOKpATIA TOU
618aktopikou kat tou [IENEA.

Euyxapiote) ouvipodod pou Bava yia ta eknmAnkukda 6Uo tedeutaia Xpo-
vid, Kat €181KdA yla v OUPIapdotacn g Katd 1o guaiobnro diaotnpa g
ouyypaong g datpBrig. Ot petartuxiakeg pou onoudég Sa rtav 1moAu
dlaopetikég Kal olyoupda 1o HUOKOAES XWPIig autnv.

TéAog, oPpeid® £va TEPAOTIO EUXAPLIOTR OV OIKOYEVELD 110U TTOU TIOTE dev
otapdtnoe va pe otnpidet pe kabe tporo. H epyaoia auvt adiepoverat tau-
1o)pova Kat otoug yoveig pou, opyo kat Katr.

Euvayyelog Mniaprndag
ABrva, OxktmBpilog 2009

Contents

List of Algorithms
List of Figures
List of Tables

1 Introduction
1.1 Modeling an All-Optical WDM Network
1.2 Optimization Problems in WDM Networks
1.3 Preliminary Definitions

2 Maximum Request Satisfaction in WDM Rings
2.1 Introduction 0oL
2.1.1 RelatedWork
2.1.2 Preliminaries
2.2 Algorithms for Maximum Path Coloring
2.2.1 Shortest-First Algorithm
2.2.2 Combining Solutions
2.2.3 Selecting the Best Solution
2.2.4 Iterative Algorithm
2.3 Algorithms for Maximum Routing and Path Coloring
2.3.1 Shortest-First Algorithm
2.3.2 Combining Solutions
2.3.3 Selecting the Best Solution
2.3.4 Iterative Algorithm
2.4 NumericalResults
2.4.1 Discussion 0o
2.5 Conclusions 000

3 Maximum Profit Wavelength Assignment in WDM Rings
3.1 Introduction 0L
3.1.1 Preliminaries

19

21

25

27
28
29
30

33
33
34
34
35
35
37
38
39

39
41
43
43
43
44
51

53
53
54

16 CONTENTS
3.2 Matchand Replace 54
3.3 Other Approaches for Approximating MaxPROFIT-PC 58

3.3.1 BestChoice, 58
3.3.2 Iterativeo 60
333 Greedy 62
3.4 NumericalResults 63
3.4.1 Experimental Setup 63
3.4.2 Discussiono 0oL 65
3.5 Conclusions e 67

Non-cooperative Wavelength Assignment in Multifiber Optical
Networks
4.1 Introduction00
4.2 RelatedWork
4.3 Preliminarieso
4.3.1 Game-Theoretic Model
4.4 Price of Stability, Existence, and Convergence to Nash Equi-
libria
4.5 Computing Optimal and Approximate Equilibria
4.6 Tight Upper Bounds on the Price of Anarchy
4.7 The Price of Anarchy on Graphs with Maximum Degree 2
4.7.1 A Constant Bound on the Price of Anarchy for Small
Number of Wavelengths
4.7.2 Unbounded Price of Anarchy for Large Number of Wave-
lengths Lo
4.8 Conclusionso

Colored Resource Allocation Games

5.1 Introductiono,

5.2 Preliminaries 0 00000

5.3 Colored Congestion Games
5.3.1 The Price of Anarchy for max Social Cost
5.3.2 The Price of Anarchy for sum Social Cost
5.3.3 The Price of Anarchy for fiber Social Cost

5.4 Colored Bottleneck Games
5.4.1 The Price of Anarchy for max Social Cost
5.4.2 The Price of Anarchy for sum Social Cost
5.4.3 The Price of Anarchy for fiber Social Cost

5.5 Conclusionsl

71
71
73
75
76

78
79
83
90

91

94
96

CONTENTS 17

6 Path Coloring Applied to a Transportation Problem 111
6.1 Introduction Lo 111
6.2 RelatedWork 112
6.3 Preliminarieso 113
6.4 Headway Optimization in Chain, Star, and Spider Networks 115

6.4.1 An Algorithm for Chains 115
6.4.2 An Algorithm for Stars and Spiders 117
6.5 PMSinRing Networks 118
6.5.1 TheCaseC=7:0 118
6.5.2 TheCase C#r 0 121
6.6 PMSin Tree Networks 124

6.7 Conclusions

Bibliography 129

List of Algorithms

© 0 NO Ok W~

10
11
12

MAXPC-SF e 36
MaxPC-CombSol 37
MAXRPC-SF e 40
MAXRPC-CombSol 42
Match-and-Replace 55
Best-Choice 59
Iterativeo 60
MPLU-Greedy 62
Computing pure Nash equilibria for the class of S-PMC(ROOTED-

TREE) games.« v i v et e e e e e 80
An algorithm for PMS in chain networks 115
An algorithm for PMS in spider networks 117
An algorithm for PMS in ring networks with C#,:0 123

19

List of Figures

2.1

2.2

2.3

2.4

2.5

3.1

Performance of algorithms for MAxXPC in terms of the num-
ber of satisfied paths: n = 100, m ranges from 200 to
600, k = 40, uniform distribution. Top: MaxPC-Chain,
MaxPC-CombSol, MaxPC-BestSol, and MaxPC-BestSol-all.
Bottom: MaxXPC-SF, MaxPC-CombSol, MaXPC-CombSol-all,
and MAXPC-Iter.
Performance of algorithms for MAXRPC in terms of the num-
ber of satisfied requests: n = 100, m ranges from 200 to
600, k = 40, uniform distribution. Top: MaxRPC-Chain,
MaxRPC-CombSol, MAXRPC-BestSol, and MAXRPC-BestSol-
all. Bottom: MAXRPC-SF, MAXRPC-CombSol, MAXRPC-Comb-
Sol-all, and MAXRPC-Iter.
Time performance of algorithms for MAXPC (top) and MaxRPC
(bottom): n = 100, m ranges from 200 to 600, k = 40, uni-
form distribution. 0oL,
Performance of algorithms for MaxPC in terms of the number
of satisfied paths (top) and time (bottom): n = 100, m = 500,
k ranges from 20 to 100, Gaussian distribution.
Time performance of algorithms for MAXRPC. n = 16, m
ranges from 30 to 150, k = 8. Top: uniform distribution.
Bottom: Gaussian distribution.

An instance of MAXPROFIT-PC in which the Match-and-Replace
algorithm performs as badly as possible. There is only one
available color and three paths, p;, ps, and ps with profits a,
a+ 1, and a respectively. Assuming that Match-and-Replace
picks edge e as separation edge in Step 1, it will color path p,
for a profit of a + 1, while the optimal solution would be to
color paths p; and ps for a profit of 2a. The value of a is
arbitrary. L. oL

21

46

47

48

49

50

58

22

LIST OF FIGURES

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

5.1

6.1

An instance of MAXPROFIT-PC in which the MPLU-Greedy al-
gorithm performs badly. There is only one available color
and two paths, p; and p, with profits £ — 1 and 1 respec-
tively, and length ¢ and 1 respectively. The MPLU-Greedy
algorithm will color path p, for a profit of 1, while the opti-
mal solution would be to color path p; for a profit of ¢ — 1.
The value of £ is arbitrary.
Instance pack parameters: n ranges from 4 to 16, m = 10n,
k=8, W =10, endpoints: uniform.
Instance pack parameters: n = 100, m ranges from 200
to 500, k = 80, W = 100, endpoints: uniform.
Instance pack parameters: n = 100, m ranges from 200
to 500, k = 80, W = 10, endpoints: gaussian:20:2.
Instance pack parameters: n = 16, m ranges from 100
to 200, k = 8, W = 10, endpoints: gaussian:8:1.
Instance pack parameters: n = 100, m ranges from 200
to 500, k = 80, W = 100, endpoints: uniform.

The construction A,(A) for the proof of Lemma 4.17. The
thick lines represent the edges of the underlying graph, and
the thin lines represent the paths defined on the graph. The
color and multiplicity of each group of paths is written next
to that group. Each shaded box represents a recursive copy
of AL(A—1).
The construction As3(3), as described in Lemma 4.17. Dif-
ferent colors are shown by different line styles. Solid black
lines represent the edges of the underlying graph.
Alternate branching in the construction of Lemma 4.17 in
order to achieve an asymptotically tight lower bound for the
price of anarchy on graphs with maximum degree 3.
The path structure implied in the proof of Lemma 4.24. For
the sake of simplicity, paths in P; are assumed to be colored
with aq;, fori<n.
Recursive construction of path set P(A, a;) for a; € W \ A.

A worst-case instance that proves the tightness of the upper
bound, depicted as network game. A dashed line represents
a path of length ? connecting its two endpoints.

An instance of PMS on a chain network.

63

66

66

67

68

68

87

88

89

93
95

LIST OF FIGURES

23

6.2

6.3

6.4

6.5

An infinite family of PMS instances in rings, in which a p-
approximate solution for PC does not yield an /l)—approximate
solution for PMS.
An example showing that the “path coloring” technique does
not work for rings with C #r 0. Assuming 7(0,u) = T and
7(u.0) = 7. the path coloring technique would assign time
slots O and g to routes r; and r, respectively and the two
routes would collide at node O at any time which is an integer
multipleof T.
An example showing that Algorithm 11 for spiders does not
work for trees. Assuming that route r; is assigned time slot O
and route r, is assigned time slot % route r; collides with
route r, at node u at time %.
An infinite family of PMS instances in trees, in which a p-
approximate solution for PC does not yield an %—approximate
solution for PMS. oL

120

121

125

List of Tables

2.1

2.2

3.1

3.2

5.1

5.2

An empirical ranking of the algorithms for problems MaxPC
and MaXRPC with respect to their performance in the exper-
iments in terms of number of satisfied requests. 52
An empirical ranking of the algorithms for problems MaxPC
and MaxRPC with respect to their performance in the exper-
iments in terms of time efficiency. 52

An empirical ranking of the algorithms for problem MAXPROFIT-

PC with respect to their performance in the experiments in
terms of attained profit.o 69
An empirical ranking of the algorithms for problem MAXPROFIT-

PC with respect to their performance in the experiments in
terms of time efficiency.00 69

The price of anarchy of Colored Congestion Games (sum
player cost). Results for classical congestion games are shown

in therightcolumn. 100
The price of anarchy of Colored Bottleneck Games (max player
cost). Results for classical bottleneck games are shown in the
rightcolumn. L0 100

25

Chapter 1

Infroduction

An optical network is a communications network in which physical links
between nodes of the network are implemented with optical fibers. This
setup may also be referred to as an all-optical network in order to stress the
fact that all communication is carried out in the optical domain. By con-
trast, in almost-all-optical networks a certain amount of electronic switch-
ing may be involved.

Optical networking is widely recognized as the technology of choice
for surface communication networks. When compared to legacy copper
wire, optical fibers offer huge bandwidth, low attenuation, and immunity
to electromagnetic interference. On some occasions, optical fibers have
been used as a simple alternative to copper wire, meaning that the op-
tical signal used a single light frequency on the fiber and the fiber itself
acted as a simple point-to-point link of high bandwidth. However, the
ample bandwidth available on a single optical fiber can be exploited more
efficiently: a dominating technology in contemporary all-optical network-
ing called Wavelength Division Multiplexing (WDM) allows for “splitting” the
fiber bandwidth into multiple independent channels (wavelengths), each
one operating at a different light frequency. With WDM, each wavelength
offers bandwidth comparable to the bandwidth that was utilized in the ab-
sence of WDM. We will refer to an all-optical network that utilizes WDM as
a WDM network.

A communication request is described by its source node and its target
node and is considered satisfied when the network makes it possible for a
continuous data stream originating from the source to reach the target. In
order to satisfy a communication request in an all-optical WDM network,
one has to establish a path which connects the source to the target using
the links available on the network. Following that, one also has to specify
the channel that will be utilized by the data stream on each fiber of the

27

28 INTRODUCTION

path. This is achieved by reserving the corresponding wavelength on each
fiber. The first step is referred to as “routing” and the second step is
referred to as “wavelength assignment”.

Technologically, it is possible to have a communication request using
different wavelengths on different fibers. One way to accomplish this is
by planting a piece of terminal equipment called “wavelength converter”
on each node of the path where a change of wavelength is required. A
second option is to convert the data stream into electronic form and then
re-modulate it on a different wavelength. The first option requires expen-
sive equipment, whereas the second option introduces unacceptable over-
head because optoelectronic conversion is significantly slower than purely
optical switching. For these reasons, it is common practice to enforce the
constraint that a communication request must use the same wavelength
on all the fibers which it traverses. Let us summarize the two constraints
that limit our routing and wavelength assignment options in an all-optical
WDM network:

e Each request must use a single wavelength on all the fibers that it
traverses (wavelength continuity constraint).

e If two requests use the same fiber, then they must use different wave-
lengths.

The interested reader is referred to a survey by Dutta and Rouskas [29]
and references therein for a broader exposition of optical network compo-
nents and further options for routing in WDM networks. In the following,
we will deal only with all-optical WDM networks.

1.1 Modeling an All-Optical WDM Network

A network is represented by an undirected graph G = (V, E), where the
set of nodes V represents the nodes of the network and the set of edges E
represents the physical links of the network. The set of communication
requests is represented by a set R of node pairs. A specific routing for a
request corresponds to a simple path (i.e., a path without repetitions of
nodes) on the graph, connecting its endpoints. We assume that each of
the deployed fibers provides exactly the same wavelengths; if k is the num-
ber of available wavelengths per fiber, then we denote the set of available
wavelengths by W = {a,, ..., a}.

Throughout this thesis, we will assume that communication requests
are undirected. Undirected requests correspond to full-duplex communi-
cation. In this mode of communication, it is assumed that each physical

1.2. OPTIMIZATION PROBLEMS IN WDM NETWORKS 29

link in the network is implemented with two parallel optical fibers. Each
fiber is reserved for carrying data in one direction only. Whenever a request
between two nodes is assigned a wavelength, this wavelength is reserved
for this request on all the fibers of both parallel paths connecting the two
nodes; each path is used for transferring data in one direction only. Two
paths are said to overlap when they share a physical link of the network.

We usually identify each wavelength with a color. Then, the wavelength
assignment problem is cast as a path coloring problem in which the fol-
lowing constraints must be obeyed: each path must be assigned a single
color, and overlapping paths must be assigned different colors.

1.2 Oplimization Problems in WDM Networks

In practice, the bandwidth available in commercially deployed WDM net-
works is limited to a few dozen, or at most hundred, wavelengths per fiber
and the situation is not expected to change in the near future. Therefore,
given a large enough network load, it will be impossible to satisfy all of the
communication requests simultaneously. Accordingly, in the problems of
routing and wavelength assignment in WDM networks that we will study,
we will assume that the number of available wavelengths per fiber is fixed
to some number k which is given as part of the input. The goal will be,
then, to satisfy as many requests as possible using at most k colors. We
formally define our first problem in graph-theoretic terms as follows:

Problem 1.1 (MAxiMUM RoOUTING AND PATH CoLoRING, MAXRPC).

Instance: (G, R, k), where G is an undirected graph, R is a set of pairs of
nodes (requests), and k € N* is the number of available colors (wavelengths).
Feasible solution: an assignment of paths to a subset of requests R’ C R
and a coloring of these paths with at most k colors so that no overlapping
paths are assigned the same color.

Goal: maximize |R’|.

In a variation of the problem, the set of requests given as input may
be already routed. Pre-routed requests arise in settings where the path on
which a request will be routed is decided independently of the wavelength
assignment procedure. This is the case when there are specific routing
requirements, such as shortest-path routing, or when the network operator
decides, for the sake of simplicity, to split the routing and wavelength
assignment process into separate steps.

Problem 1.2 (MaxiMuM PATH CoLoRING, MaxXPC).
Instance: (G, %, k), where G is an undirected graph, P is a set of simple

30 INTRODUCTION

paths (pre-routed requests) defined on G, and k € N' is the number of
available colors.

Feasible solution: a set of paths ' C P that can be colored with at most k
colors so that no overlapping paths are assigned the same color.

Goal: maximize |P’|.

Note that, in general, there may be multiple paths defined on the same
set of edges of a graph. We assume that each path in a given instance of
the problem is distinguished by a unique identifier (ID) and thus we speak
of sets instead of multisets of paths. We will not make explicit use of path
ID’s hereafter.

In yet another variation of the problem, each request is associated with
a certain profit (or weight) and the goal is to satisfy a maximum-profit sub-
set of the given requests. Profits may represent priorities or actual revenues
associated with the communication requests. We define the MAXPROFIT-PC
problem as follows:

Problem 1.3 (MaxiMUM PROFIT PATH COLORING, MAXPROFIT-PC).

Instance: (G, P, w, k), where G is an undirected graph, P is a set of simple
paths defined on G, w is a profit function w : P — Q%, and k € N* is the
number of available colors.

Feasible solution: a set of paths ' C P that can be colored with at most k
colors so that no overlapping paths are assigned the same color.

Goal: maximize Y, ,cpr w(p).

The MaxPC, MaXRPC, and MAXPROFIT-PC problems defined above are
NP-hard [75, 64] even in simple topologies such as rings and trees. An al-
gorithm A for a maximization problem II is a p-approximation algorithm (for
0 < p £ 1) if and only if for every input instance I of I, A runs in time poly-
nomial in |I| (the size of the encoding of instance I) and delivers a solution
with total profit at least p- OPT. Here, OPT denotes the profit of an optimal
solution for I. Analogously, an algorithm for a minimization problem is a
p-approximation algorithm for p > 1 if and only if it produces a solution
with cost at most p- OPT. For a thorough introduction to NP-completeness
and approximation algorithms the interested reader is referred to standard
textbooks such as [38, 73].

1.3 Preliminary Definitions

We define various network topologies which will be of interest to us through-
out this thesis. A chain is a graph that consists of a single path. A ring

1.3. PRELIMINARY DEFINITIONS 31

is a graph that consists of a single cycle. A tree is a graph in which every
pair of nodes is connected by exactly one simple path. A star is a tree that
consists of a central node (sometimes called “the hub”) connected with an
edge to all other nodes of the graph; these are the only edges that appear
in the graph. Observe that chains and stars are special cases of trees.
For a more thorough introduction to graph-theoretic concepts the reader
is referred to any standard textbook on graph theory, e.g. [28].

Given a graph G = (V,E) and a set of requests R or paths P, we will
use n for the size of set V and m for the size of set R or £ (whichever is
applicable). For a fixed routing of requests, we will denote by L(e) the load
of an edge e € E, i.e. the number of paths that use edge e. The maximum
load over all edges will be simply called load and denoted by L.

Chapter 2

Maximum Request Satisfaction in WDM
Rings

2.1 Introduction

We follow an approach considered in several papers [65, 32, 63, 64], that
of maximizing the number of requests that can be served at the same time
given that the number of wavelengths is limited. Here we study the problem
in rings, which is a fundamental network topology and is frequently de-
ployed in practice (for example, in the case of SONET rings—Synchronous
Optical Network rings). Moreover, the ring topology is the simplest topology
where routing decisions are important, and also one of the simplest topolo-
gies for which the MAXPC and MaxRPC problems are NP-hard [75, 64].

In this chapter, we consider the two problems MaXPC and MaxRPC.
Recall that in the first the routing is pre-determined and only a color as-
signment is sought, while in the second both a routing and a color assign-
ment are sought. We perform an experimental evaluation of a number of
algorithmic approaches for these problems in rings [10]. We first propose
a new greedy heuristic for both problems which is very fast and easy to im-
plement. We also develop improved variations of approximation algorithms
that have been proposed in [75, 63, 64].

We end up with a bunch of seven algorithms for each problem. The
comparative study of their performance, in terms of satisfied requests and
running time, offers some interesting insights. All algorithms almost al-
ways manage to satisfy many more requests than indicated by their worst-
case analysis. There are two simple algorithms that achieve satisfactory
solutions very fast. The iterative algorithm usually finds largest solutions,
despite the fact that it has the worst theoretical approximation ratio among

33

34 MAXIMUM REQUEST SATISFACTION IN WDM RINGS

the more sophisticated algorithms. One of our improved algorithms com-
petes well with the iterative algorithm while being several times faster.

2.1.1 Related Work

MaxPC in chains is known as the “k-coloring of intervals” problem which
can be solved exactly [22] in polynomial time. For MAXRPC in rings, [63]
gives a %-approximation algorithm for the undirected problem and a %—
approximation algorithm for the directed problem; for MAXPC in rings a
%—approximation is described in [64]. Wan and Liu [75] present (1 - é)-
approximation algorithms for MAXRPC in rings and for MaxPC in trees,
as well as a constant approximation algorithm for MAXRPC in meshes.
Their algorithms employ successive calls to algorithms that solve MAXRPC
or MaxXPC in instances with one available color (also known as the Maxi-
mum Edge-Disjoint Paths problem). Using the same technique, Erlebach
and Jansen [33] provide a (1 - i)-approximation algorithm for MAXRPC in
bounded-degree bidirected trees and a 0.451-approximation algorithm for
general bidirected trees. The on-line version of MAXRPC has been studied
in [6] where a general technique to obtain a (o + 1)-competitive algorithm
for arbitrary number of wavelengths from a p-competitive algorithm for one
wavelength is presented.

A generalization of MaXPC to multi-fiber networks has been considered
for rings [66] and trees [35], where efficient constant approximation algo-
rithms have been proposed; the problem for general topologies has been

studied in [69] and [3].

2.1.2 Preliminaries

A path which is colored with some color c is called a lonely path if it is the
only path which is colored with color c. A request is called a lonely request
if it is routed and colored so that the corresponding path is a lonely path.
Two different requests are called compatible (with each other) if they can
be routed so that the corresponding paths are not overlapping.

Definition 2.1 (Request compatibility graph). Let (G, R, k) be an instance
of MaxRPC. The corresponding request compatibility graph is an undirected
graph H = (R, E), where

E ={(r,r) : r and r’ are compatible requests in R} . 2.1

If we remove an edge e from a ring we get a chain; we call such an
edge a separation edge. Any separation edge induces a natural partition of

2.2. ALGORITHMS FOR MAXIMUM PATH COLORING 35

the paths defined on the ring into two sets: the first set contains all those
paths that actually use the separation edge, and the second set contains
the rest of the paths.

Definition 2.2 (Path compatibility graph). Let (G, P, k) be an instance of
MaxPC where G is a ring, and let e be a separation edge partitioning the path
set into P, and P. = P \ P. where P, is the set of paths using edge e. The
corresponding path compatibility graph is a bipartite graph H = (P.U%P,, E),
where

E ={(p.q) € P. X P. : p and q do not overlap} . (2.2)

2.2 Algorithms for Maximum Path Coloring

In this section we focus on the case in which requests are pre-routed, that
is, we study the MaxPC problem. Recall that in this case an instance
actually consists of a graph G, a set of paths ¥ and a number of colors k
and the goal is to color as many paths as possible using the given colors,
without assigning the same color to overlapping paths.

The problem can be solved exactly in O (n + w) time if the input graph
is a chain, using the algorithm of Carlisle and Lloyd [22]. That algorithm
has the following useful property:

Property 2.3. If k > L the Carlisle-Lloyd algorithm colors all paths using
exactly L colors. If k < L the algorithm colors a maximum cardinality subset
of paths of load exactly k.

Many of the algorithms presented in this and the next chapter make
use of the Carlisle-Lloyd algorithm in order to optimally color chain subin-
stances.

2.2.1 Shortest-First Algorithm

We first present a new, greedy algorithm for MAXPC in rings (Algorithm 1).
This algorithm is easy to implement and very fast; nevertheless we will see
that it is almost as competent as the more sophisticated algorithms that
will follow.

We next show that this simple algorithm always achieves a solution of
size at least one-third the size of an optimal solution.

Theorem 2.4. MaxXPC-SF is an é—approximation algorithm for the MaxPC
problem in rings.

36 MAXIMUM REQUEST SATISFACTION IN WDM RINGS

Algorithm 1 MaxPC-SF
Input: an instance (G, P, k) of MaXPC, where G is a ring
1: Sort paths in # in order of non-decreasing length.
2: for all paths p € £ do
3: Assign to p the smallest color that is available on all edges of p (if
such a color exists, otherwise do nothing).
4: end for

Proof. Let " be the set of paths colored by an optimal solution and £’ be
the set of paths colored by MAXPC-SF. Let also P: (resp. P;) be the subset
of P (resp. ') that consists of paths colored with color a;.

Let D be any set of non-overlapping paths on the ring that remain
uncolored at the end of the execution of MAXPC-SF. Fix some color g; and
consider some p € #;. If p overlaps with three or more paths from D, then
at least one of them is strictly shorter than p and cannot overlap with any
other path in PJ’.. This implies that MAXPC-SF would have considered this
path before considering path p, and at that point the algorithm would have
been able to color it with color g;. This contradicts the assumption that
the paths in D remain uncolored at the end of the execution of MaXPC-SF.
Therefore, each path in #; overlaps with at most two paths in D. This
implies that

ID|<2-|P;

Note that Equation 2.3 holds for all j, 1 <j < k.

Now, let D; = P;\#’, that is, D; consists of paths that are colored with g;
in the optimal solution, but were not colored by MAXPC-SF. Clearly, D; is
a set of non-overlapping paths that remain uncolored at the end of the
algorithm. Consequently, from Equation 2.3, forall i, 1 <i < k:

|

IDj <2 min|P)| <2 — (2.4)
1<j<k k

(2.3)

Let us now observe that " C P’ U |J, ;< D;. This implies that

. P’
|P|SIP’|+Z|Di|£|P’|+k-(2-| '):3-|¢>'| , (2.5)
. k
1<i<k
which completes the proof. d

Equation 2.4 implies that MAXPC-SF behaves much better on the aver-
age. For example, if some color g; has been used fewer than % times, for
some ¢ > 1, then Equation 2.5 becomes

Pl<(1+2) w1 s (2.6)

2.2. ALGORITHMS FOR MAXIMUM PATH COLORING 37

Algorithm 2 MaxPC-CombSol
Input: an instance (G, P, k) of MaxPC, where G is a ring
1: Select as separation edge some e € E with minimum load; partition
path set P into two path sets £, and #., where $. contains all paths
in P that pass through e, and . = P \ Pe.
2: Call the Carlisle-Lloyd algorithm [22] for MAXPC in chains on input
(G-eP. k).
3: Find a maximum matching M in the corresponding path compatibility
graph.
4: Uncolor lonely paths.
5. while there exists an edge ¢’ € M and free colors remain do
6: Color the two endpoints (paths) of e with a free color; remove €’
from M.
7: Uncolor lonely paths.
end while
9: while free colors remain do
10: Color an uncolored path in £ with a free color.
11: end while
12: for all colors c do
13: Find all uncolored paths that do not overlap with any path colored
with c; let P, be this set.
14: Find a maximum subset of non-overlapping paths of £, and color
them with c.
15: end for

%

that is, the solution returned is near-optimal for large c. Indeed, we will see
in Section 2.4 that MAXPC-SF usually achieves quite satisfactory solutions.
A simple implementation of the algorithm has running time O (nmk).

2.2.2 Combining Solutions

Algorithm MaxPC-CombSol uses two main techniques: the one colors a
chain instance and the other colors pairs of non-overlapping paths. The
algorithm in fact combines the two solutions so as to retain some key
properties of both. This algorithm is an improved version of the algorithm
presented in [64]. The main improvement is an additional last step that
takes care of remaining paths that possibly lie on edges where some color
is still free. Details are presented in Algorithm 2.

It has been shown in [64] that the algorithm presented there achieves
an approximation guarantee of % Consequently, this holds for MaxPC-

38 MAXIMUM REQUEST SATISFACTION IN WDM RINGS

CombSol as well, since the main difference of the two algorithms is the
addition of the final for-loop which may only augment the solution achieved
in the previous steps.

Steps 12-15 of Algorithm 2 cost O (nuimk) time. Therefore, the time
complexity of Algorithm MaxPC-CombSol is O (nmik + m?), where O (m?) is
the complexity of the bipartite matching computation, using an algorithm
by Ma and Spinrad [52].

Algorithm MaxPC-CombsSol-all The selection of the separation edge may be
crucial for the average performance of the algorithm. Therefore, we will
consider a new version of the algorithm which consists of n executions
of MaxPC-CombSol, each time with a different separation edge. The time
complexity of this algorithm, MaxPC-CombSol-all, is O (n(nmk + m?)).

2.2.3 Selecting the Best Solution

The MaxXPC-BestSol algorithm is an adaptation of MaxRPC-BestSol (see
Section 2.3.3). It solves each instance of the problem with two independent
procedures, called Chain Step and Matching Step, and merely chooses the
best solution between the solutions of these procedures. The Chain Step
performs the same actions as Steps 1 and 2 of Algorithm 2. In addition,
any color that remains after executing these steps is used to color a single
path in $.. The Matching Step performs the same actions as Steps 3
and 5-6 of Algorithm 2.

It is to be noted that MAXPC-BestSol achieves the same worst-case ap-
proximation ratio as the more involved algorithm MaxPC-CombSol. The
proof follows from a straightforward adaptation of the proof for the approx-
imation ratio of MAXRPC-BestSol, which appears in [63].

Theorem 2.5. MaxPC-BestSolis a %—approximation algorithm for the MaxPC
problem in rings.

The time complexity of the algorithm is determined by the bipartite
matching computation which can be done in O (m?) time, using an algo-
rithm by Ma and Spinrad [52].

Algorithm MaxPC-Chain The Chain Step of MaxPC-BestSol can be used as
an algorithm on its own. Moreover, it can be shown [64] that it achieves
an approximation guarantee of % Its time complexity is O (n + m) [64]. We
will refer to this algorithm as MAXPC-Chain.

2.3. ALGORITHMS FOR MAXIMUM ROUTING AND PATH COLORING 39

Algorithm MaxPC-BestSol-all The selection of the separation edge e may
again play an important role on the average performance of the algorithm,
although it does not affect the worst-case approximation ratio. Therefore,
we will also evaluate a new version of the algorithm, called MaXPC-BestSol-
all, which consists of n executions of MaXPC-BestSol, each time with a
different separation edge. Clearly, the time complexity of MaxPC-BestSol-
all is O (nm?).

2.24 Iterative Algorithm

Algorithm MaxPC-Iter was proposed by Wan and Liu [75] and works as
follows: given a set of paths £ and k available colors it examines colors
one by one. For each color c, it computes a maximum subset S of non-
overlapping paths. To achieve this, for each path p € P it determines a
maximum subset S, of £ that can be colored with the same color as p
(using e.g. an algorithm for the well known Activity Selection Problem [25,
p- 371]), and picks the largest such subset. It then colors paths in S with
color ¢, removes S from # and proceeds with the next color.

k
Algorithm MaxPC-Iter achieves an approximation ratio of 1 — (1 - i) >

1 —é ~ 0.632; the ratio 1 —(1 - i)k is slightly worse (at least for k > 10) than
the approximation guarantee of % achieved by algorithms MaxPC-BestSol,
MaxPC-BestSol-all, MAXPC-CombSol, and MaxPC-CombSol-all. The time
complexity of this algorithm is O (km? logm).

2.3 Algorithms for Maximum Routing and Path Coloring

2.3.1 Shortest-First Algorithm

We present MAXRPC-SF (see Algorithm 3), which is a heuristic analogous
to the simple heuristic for MAXPC; the difference is that it also takes care
of the routing by imposing shortest-path routing on all communication
requests. We show that MAXRPC-SF is an %—approximation algorithm for
MaxRPC in rings. A simple implementation of the algorithm has running
time O (nmk).

Theorem 2.6. MaxXxRPC-SF'is an %—approximation algorithm for the MaxRPC
problem in rings.

Proof. Let R" be the set of requests satisfied by an optimal solution and R’
be the set of requests satisfied by MAXRPC-SF. Let also R; (resp. R)) be

40 MAXIMUM REQUEST SATISFACTION IN WDM RINGS

Algorithm 3 MAXRPC-SF
Input: an instance (G, R, k) of MAXRPC, where G is a ring
1: Perform shortest-path routing on R, thus obtaining a set of routed
requests P.
2: Sort paths in # in order of non-decreasing length.
for all paths p € £ do
4: Assign to p the smallest color that is available on all edges of p (if
such a color exists, otherwise do nothing).
5. end for

©w

the subsetvof R (resp. R’) that consists of requests colored with color a;.
Denote by R; the subset of R that uses longest-path routing. For any set of
requests A, let Sp(A) denote the set of paths corresponding to shortest-path
routing of all requests in A.

Let D C R be any subset of requests that remain uncolored at the end
of the execution of MAaXRPC-SF, with the additional property that sp(D)
contains non-overlapping paths. Fix some color g; and consider some
r € R}. If the shortest-path routing of r overlaps with three or more paths
from sp(D), then at least one of them is strictly shorter than the shortest-
path routing of r and cannot overlap with any other path in SpGQJ’.). This
implies that MAXRPC-SF would have considered the corresponding request
before considering request r, and at that point the algorithm would have
been able to color it with color g;. This contradicts the assumption that the
requests in D remain uncolored at the end of the execution of MAXRPC-
SF. Therefore, each path in sp(R;) overlaps with at most two paths in Sp(D).
This implies that

Dl <2-|R]| . (2.7)

Note that Equation 2.7 holds forallj, 1 <j<k.

Now, let D; = (R: \ Rf) \ R’, that is, D; consists of requests that are
shortest-path routed and colored with a; in the optimal solution, but
were not satisfied by MAXRPC-SF. Clearly, Sp(D;) contains non-overlapping
paths and applying Equation 2.7 we get, forall i, 1 < i< k:

Rl
l

ID) <2 min|R|<2-
1<k

(2.8)

Let us now observe that

R =[] ®R\R)u [R . (2.9)

2.3. ALGORITHMS FOR MAXIMUM ROUTING AND PATH COLORING 41

By the definition of D;, we get that R \ R, € D, UR’. Plugging this into
Equation 2.9, we get that

Rc|)ouryu| JR=ru| DUl]R . (2.10)

1<i<k 1<i<k 1<i<k 1<i<k
Therefore,
R < IR'| + Z IDy| + Z R 2.11)
1<i<k 1<i<k

Finally, note that if [R;| > 3, then at most one request in R; can be
longest-path routed. So, in any case,

=
x;

<2. (2.12)

Plugging Equations 2.8 and 2.12 into Equation 2.11, we have that

Rl

R k)+2k:3-|R’|+2k. (2.13)

SIR’|+k-(2-

This completes the proof because either k < |R’|, whence |R| <5-|R’|, or
there are unused colors at the end of the execution of MAXRPC-SF, which
implies that the solution returned by the algorithm is optimal. 0

2.3.2 Combining Solutions

Our second algorithm for MAXRPC (MaXRPC-CombSol, see Algorithm 4) is
the analogue of MaXxPC-CombSol for the MAXRPC problem.

It can be shown that MAXRPC-CombSol returns a solution which is at
least as large as the solution returned by a %—approximation algorithm for
MaxXRPC in rings that was presented in [63] (we will also implement that
algorithm under the name MAXRPC-BestSol; see Section 2.3.3). Therefore,
MaxRPC-Comb$Sol is a %—approximation algorithm.

Steps 5-15 of Algorithm 4 cost O (nmk) time. Therefore, the time com-
plexity of Algorithm MaxRPC-CombSol is O (nmik + m?®), where O (m?®) is
the time complexity of the maximum matching computation of Step 3.

Algorithm MaxRPC-CombsSol-all As before, we will also consider an algo-
rithm consisting of n calls to MAXRPC-CombSol, each with a different
separation edge; we call this algorithm MaAXRPC-CombSol-all. The time
complexity of MAXRPC-CombSol-all is O (n(nmic + m?)).

Algorithm 4 MaXxRPC-CombSol

Input: an instance (G, R, k) of MAXRPC, where G is a ring

1:

10:

11:

12:

13:

14:

15:

Select as separation edge some e € E with minimum load with respect
to shortest-path routing; route requests so that paths avoid e; let £,
denote the resulting set of paths.
Call the Carlisle-Lloyd algorithm [22] for MaXPC in chains on input
(G-e,P., k).
Find a maximum matching M in the corresponding request compatibil-
ity graph.
Uncolor lonely requests.
while there exists an edge e’ € M with at least one endpoint uncolored
and free colors remain do

Color the two endpoints (requests) of € with a free color; route the
requests accordingly; remove e’ from M.

Uncolor lonely requests.
end while
while free colors remain do

Select an uncolored request in R, route it using the shortest path
and color it with a free color.
end while
for all colors c do

Find all uncolored requests that can be routed without overlapping
with any path colored with c; route them accordingly; let #,, be the
resulting set of paths.

Find a maximum subset of non-overlapping paths of £, and color
them with c.
end for

2.4. NUMERICAL RESULTS 43

2.3.3 Selecting the Best Solution

Algorithm MAXRPC-BestSol was presented in [63]. The Chain Step is the
same as Steps 1 and 2 of Algorithm 4. The Matching Step is the same
as Steps 3 and 5-6 of Algortihm 4. As in the case of MAXPC-BestSol, we
independently call the Chain Step and the Matching Step and choose the
best between the two solutions. As shown in [63], MAXPC-BestSol is a
%-approximation algorithm. The time complexity of MAXRPC-BestSol is
determined by the maximum matching computation which can be done in
O (m?®) time.

Algorithms MaxRPC-BestSol-all and MaxRPC-Chain In the same manner as in
the case of MaxPC-BestSol, we consider the variation of MAXRPC-BestSol
consisting of n calls to MAXRPC-BestSol, each time with a different separa-
tion edge; we call this algorithm MaxRPC-BestSol-all. We also consider the
Chain Step of MAXRPC-BestSol as a separate algorithm, called MAXRPC-
Chain. It was shown in [63] that MAXRPC-Chain is a %-approximation
algorithm. The time complexity of MAXRPC-BestSol-all is O (nm?), and the
time complexity of MAXRPC-Chain is O (n + m).

2.3.4 lterative Algorithm

Wan and Liu [75] have also proposed an algorithm for MAXRPC in rings,
which we will refer to as MAXRPC-Iter. The algorithm works similarly to
MaxPC-Iter, except that for each color c and for each request r it examines
two paths: the first corresponds to the clockwise routing of r, while the
second corresponds to the counter-clockwise routing of r. In each case,
every other request is routed so as to avoid overlapping with the path
assigned to r, or it is ignored if no such routing exists. After considering
all routings obtained as above, the one that routes a maximum subset S
of requests is chosen and the corresponding paths are colored with the
current color c¢. The requests in § are then removed from the input and
the algorithm proceeds with the next color. Similarly to MAaXPC-Iter, the
iterative algorithm for MAXRPC in rings achieves an approximation ratio of

1- (1 - %)k > 1- 1~ 0.632 and its time complexity is O (km? logm).
2.4 Numerical Results

We implemented all algorithms in C++, making use of the LEDA™ class
library of efficient data types and algorithms. All source files were compiled

44 MAXIMUM REQUEST SATISFACTION IN WDM RINGS

with the Borland™ C++ 5.5 for Win32 compiler, set to generate fastest
possible code. We relied on LEDA routines and classes for graph, array,
list and priority queue operations including sorting and finding matchings
in general graphs. The experiments were run on a Pentium™ 4 clocked at
3.2GHz with 512MB of memory.

For each combination of number of nodes (n), number of paths/requests
(m) and number of available wavelengths (k), we randomly generated two
sets of 60 instances each. For the first set, we assumed uniform distri-
bution of the endpoints of the paths/requests over the nodes of the ring.
For the second set, we assumed normal distribution with standard devi-
ation o = % We executed each algorithm on these sets of instances and
measured the average execution time and the average number of satisfied
paths/requests. Furthermore, for each of these values we calculated a 95
percent confidence interval which is shown on the plots. In the plots where
we show the number of satisfied paths/requests, we include a computed
upper bound for the sake of comparison.

Note that execution times were measured using the timer class of the
LEDA package, which does not provide for measuring exact processor time.
However, we ran the experiments on a dedicated machine in order to keep
background processes at a minimum.

Computing an upper bound on OPT In order to obtain an estimation of the
performance of our algorithms we propose an efficient way to compute an
upper bound on the value of an optimal solution. We denote by |p| the
length of path p, i.e. the number of edges that path p uses. If requests
are given instead of paths (MAXRPC problem) we consider for each request
r = (i.j) the shortest path p between nodes i and j. We index all paths
in non-decreasing order of their length. It can be easily proven that the
following lemma holds:

Lemma 2.7. Let B be the smallest number such that 2113:11 |p;| > nk. Then
B is an upper bound on the number of paths (requests) that can be satisfied
with k colors.

2.4.1 Discussion

A first observation is that all algorithms perform considerably better than
their theoretical guarantee. Indeed, we have included a curve showing
the computed upper bound (UB) in our figures and it turns out that all
algorithms manage to satisfy a good fraction of an optimal solution, very
often better than the theoretically predicted. Taking also into account that

2.4. NUMERICAL RESULTS 45

the upper bound used may be overestimated it is possible that the actual
performance of the algorithms is even better.

The experimental comparison of the algorithms shows that each al-
gorithm for MAXPC has similar behaviour to the corresponding algorithm
for MAXRPC, on instances of similar size. Note, however, that the latter
is slightly slower (since routing is involved) but usually achieves a higher
number of satisfied requests due to the freedom of choosing a more ade-
quate routing for each request.

Clearly, the best algorithms in terms of number of satisfied requests are
Max(R)PC-Iter and Max(R)PC-CombSol-all (see Figures 2.1 and 2.2). How-
ever, it is clear from Figure 2.3 that Max(R)PC-CombSol-all has the worst
time complexity and Max(R)PC-Iter, while faster than Max(R)PC-CombSol-
all, is still quite slow when compared to MAX(R)PC-SF, MaAx(R)PC-Chain,
Max(R)PC-BestSol, and MaAxX(R)PC-CombSol. Among the latter, Max(R)PC-
CombSol appears extremely competitive. In fact, in terms of performance
per time unit spent Max(R)PC-CombSol is clearly the best of all algorithms.
Max(R)PC-Chain seems to be even better with respect to performance/time
ratio, providing solutions that can be considered satisfactory very fast;
however its performance decreases linearly as the number of wavelengths
increases (see Figure 2.4). In contrast, algorithm Max(R)PC-SF, which is
also extremely fast, remains relatively competitive even for large number of
wavelengths. Finally, Max(R)PC-BestSol has practically the same perfor-
mance as the much faster Max(R)PC-Chain and Max(R)PC-BestSol-all has
poor performance while being the most time-consuming algorithm.

It is rather surprising that for large values of k Max(R)PC-Iter exhibits
a clear superiority although it has the theoretically worst approximation
ratio among all the algorithms (with the exception of Max(R)PC-Chain and
Max(R)PC-SF). Figure 2.4 shows that the superiority of Max(R)PC-Iter in-
creases as k increases, but its time complexity depends linearly on k
while all other algorithms are practically independent from k (probably
with the exception of MAX(R)PC-CombSol-all). Besides, MaX(R)PC-Iter ex-
hibits a super-quadratic dependence on the number of requests m, as
shown in Figures 2.3 and 2.5. A similar dependence on m alse charac-
terizes MAX(R)PC-CombSol-all and Max(R)PC-BestSol-all, while all other
algorithms seem to have a sub-quadratic dependence on m.

Finally, Figure 2.5 shows that the time complexity of Max(R)PC-Iter has
a super-quadratic dependence on m (the number of requests), the time
complexity of Max(R)PC-Chain and Max(R)PC-SF is almost linear on m
and the time complexities of the remaining algorithms are quadratic on m.
These differences may become crucial for very large numbers of requests.

220

T - T T T T T T i
Chain ——+— -
CombSol ---x--- -
BestSol :--*--- o
200 = pestSol-all & o m .
UB --m- T
180 '
(2]
=
g 160
e}
2
2
< 140
(2]
H
120
100
80 L 1 | 1 1 1 |
200 250 300 350 400 450 500 550 600
m
220 T T T T T T T i
SF —+— -
CombSol ---x--- -
CombsSol-all :----- T
200 |- Iter 8- L |
UB ———m=— //.l 4
180
()]
e
©
o
2 160
@
o
n
H*
140
120

200 250 300 350 400 450 500
m

Figure 2.1: Performance of algorithms for MaxPC in terms of the number of
satisfied paths: n = 100, m ranges from 200 to 600, k = 40, uniform distribution.
Top: MAXPC-Chain, MAXPC-CombSol, MAXPC-BestSol, and MaXPC-BestSol-all.

550

600

Bottom: MaxPC-SF, MaxPC-CombSol, MaxPC-CombSol-all, and MaxPC-Iter.

320

IChain T T T T T T
| CombSol ---x--- o
300 BestSol :--*--- T
BestSol-all & T
280 uB --m— - .
260
a
3
S 240
o
Q
o 220
2
2
T 200
(%]
H
180
160
140 [
120 | | | | | | |
200 250 300 350 400 450 500 550 600
m
320 T T T T T T T
SF ——+—
CombSol ---x--- -
300 - combSol-all :--x---
lter 8- T
280 UB —-m— e
o 260
[%)]
Q
>
i',' 240
e
Q2
% 220
o
(%]
#* 200
180
160
140
200 250 300 350 400 450 500 550 600
m

Figure 2.2: Performance of algorithms for MAXRPC in terms of the number of
satisfied requests: n = 100, m ranges from 200 to 600, k = 40, uniform distribu-
tion. Top: MAXRPC-Chain, MAXRPC-CombSol, MAXRPC-BestSol, and MAXRPC-
BestSol-all. Bottom: MAXRPC-SF, MaXRPC-CombSol, MAXRPC-CombSol-all, and

MAXRPC-Iter.

10. T T T T T T T

time (s)
o
o
[
T
1
1
|
!

i
|
*
i
i
i
\
|

o i i
0001 f e | I -
i SF
T | I Chain =--x---
| i “BestSol --*---
1le-04 ¢ ! BestSol-all &
i | CombSol ~-m-—
+ i CombSol-all ---o---
i

lter r--e

1e-05 ' '
200 250 300 350 400 450 500 550 600

m
10 T T T T | | | _
[= S el

e T e

I e T P =

1 i - |
[e

01 F B

time (s)
o
o
[y
»
\

\
\
\!
\
|

1e-04 ¢ BestSol-all +—&
r CombSol ~-m-
CombsSol-all ---&---
lter r--e

le-05 . : :
200 250 300 350 400 450 500 550 600

m

Figure 2.3: Time performance of algorithms for MaxXPC (top) and MaxXRPC
(bottom): n = 100, m ranges from 200 to 600, k = 40, uniform distribution.

350 : | | | | |
SF —+—— 1
Chain L—-X——d
BestSol :--*---
BestSol-all & e
300 CombSol +-m— |
CombSol-all ---&-- .
lter :---® --: »
UB o o o
: - - il =
g o I -
£ 250 / . :
D- .
-O -
: R
o)
§ 200 | |
T+
150 |
100
100
w
2 T T T | : | |
1.8 -]
=== -@.,,,,#4_ _____ g},, ,,,,,,,,,, 7
1.6 ’;,_.,, _____ JE Y S |
L4t B P r — 4
12 F SF —+— |
Chain +--x---
OB BestSol -~ - |
; BestSol-all 8-
E o8} CombSol +~-m- |
= CombSol-all --c- -
Iter +---® -
0.6 o] 1
_,-»—""."
0.4 0_ |
0.2 |
o) — — —
02 I I : ! ! ! !
20 30 40 50 60 70 80 % 100
w

Figure 2.4: Performance of algorithms for MaxPC in terms of the number of
satisfied paths (top) and time (bottom): n = 100, m = 500, k ranges from 20 to

100, Gaussian distribution.

0.09 T

T T T T T
SF ——+——
Chain +--x---
0.08 |- BestSol -)
BestSol-all 8- s
0.07 - CombSol ~--m--1 -
CombSol-all ---o--- s
0.06 Ilter :---® - ”(’f..f |
0.05 | .
o 004 .
0.03 | .
0.02 | .
0.01 | .
0 - -
-0.01 1 1 1 1 1 1
20 40 60 80 100 120 140 160
m
0.1 T T T T T °
SF —+—
0.09 | Chain t--x--- _
BestSol :--*--- -
BestSol-all &
0.08 - CombSol ~-m-—1 i
CombSol-all +--o---
0.07 | lter :---e---: -
0.06 - -
w 005 .
[}
£ 004} -
0.03 | T .
0.02 - -
0.01 | .
0 - -
-0.01 | | | | | |
20 40 60 80 100 120 140 160

Figure 2.5: Time performance of algorithms for MAXRPC. n = 16, m ranges from
30 to 150, k = 8. Top: uniform distribution. Bottom: Gaussian distribution.

2.5. CONCLUSIONS 51

2.5 Conclusions

We have presented various algorithms for the MAXPC and MaxRPC prob-
lems in rings and have demonstrated results concerning the achieved prac-
tical performance.

To evaluate the experimental results we take into consideration the
number of satisfied requests as well as the time performance. Taking into
account both measures we first remark that Max(R)PC-CombSol is prob-
ably the algorithm of choice for practical purposes, since it achieves one
of the best performances with respect to the number of satisfied requests,
and at the same time its time requirements are relatively low. Of course
Max(R)PC-Iter and Max(R)PC-CombSol-all produce better solutions than
Max(R)PC-CombSol, especially as k increases. Undoubtedly, Max(R)PC-
Iter performs better than all other algorithms for very large k but it gets
much slower at the same time, because its time complexity depends lin-
early on k.

From a practical point of view, we can assume that the number of nodes
and the number of wavelengths are fixed, thus it is important to consider
the behavior of algorithms with respect to the number of requests m. The
superiority of MAax(R)PC-CombSol is even more clear in this case consider-
ing its time performance. The next best choice seems to be Max(R)PC-Iter
which exhibits an intermediate time performance.

Max(R)PC-BestSol and Max(R)PC-BestSol-all are not at all competitive
because they fail to provide better solutions than much faster algorithms
such as Max(R)PC-SF, Max(R)PC-Chain, and Max(R)PC-CombSol. The new
greedy heuristic MAX(R)PC-SF is a decent choice whenever time is crucial,
since it achieves relatively large solutions while being one of the fastest
algorithms. Tables 2.1 and 2.2 summarize the above observations.

Directions for further research include fine-tuning of some parts of the
algorithms. For example, it would make sense to set a threshold on the
number of iterations of Max(R)PC-Iter and combine it with some other
strategy for the remaining colors; this could result in more acceptable
running times even for large values of I.

Table 2.1: An empirical ranking of the algorithms for problems MaxPC
and MaxRPC with respect to their performance in the experiments in terms of
number of satisfied requests.

Algorithm Request satisfaction

Ax(R)PC-Iter [75] . 8.0.0.8.¢
Ax(R)PC-CombSol-all . 8.0.0.8.¢
AX(R)PC-CombSol [64] 0. 0.8.8.¢
JPC-SF [10] * %
)
)
)

AX(R)PC-BestSol-all Y%
AX(R)PC-Chain [22] *
Ax(R)PC-BestSol [63] *

SSSESES
N N N < N N N
A

Table 2.2: An empirical ranking of the algorithms for problems MaxPC
and MaxRPC with respect to their performance in the experiments in terms of
time efficiency.

Algorithm Time efficiency
Max(R)PC-CombSol [64]) 0.6 & & ¢
Max(R)PC-SF [10] 2.2.8.8.8.9
Max(R)PC-Chain [22] 2. 0.8.0.8.¢
Max(R)PC-BestSol [63] 1. 0.0.0.0.¢
Max(R)PC-Iter [75] * % K
Max(R)PC-CombSol-all *

Max(R)PC-BestSol-all *

Chapter 3

Maximum Profit Wavelength
Assighment in WDM Rings

3.1 Introduction

In this chapter we present four algorithms for the MAXPRoOFIT-PC problem
in rings with undirected requests. Our algorithms combine ideas from al-
gorithms for MaxXPC [64, 75] with new techniques specially designed for
coloring paths with profits. We give theoretical bounds on the approxima-
tion ratio achieved by these algorithms and then move on to perform an
experimental comparison with respect to the total profit of the solutions
they produce and the execution time they require [11, 12].

One of the results of this comparison is that Match-and-Replace, a novel
algorithm that we propose, performs only marginally worse than Iterative,
which is based on a well-known technique and gives the best theoretical
guarantee for the approximation ratio among the implemented algorithms.
At the same time, Match-and-Replace is several orders of magnitude faster
than Iterative. A second finding of the experimental comparison is that
a natural greedy heuristic with non-constant theoretical approximation
guarantee actually performs quite competently and is also exceptionally
fast.

While MaxPC, the cardinality version of the problem, has been stud-
ied by several researchers [75, 32, 64, 21, 22], MaxXProriT-PC has been
considered in rather few papers [21, 22]. Both MAXPRroriT-PC and MaxPC
are NP-hard even in simple networks such as rings and trees; this can be
shown by an immediate reduction from the corresponding color minimiza-
tion problem (see e.g. [75]).

MaxProrIT-PC in chains is also known as the “weighted k-coloring of in-

53

54 MAXIMUM PROFIT WAVELENGTH ASSIGNMENT IN WDM RINGS

tervals” problem, which can be solved exactly in polynomial time as shown
by Carlisle and Lloyd [22]. In the case of MAXPROFIT-PC in rings, Caragian-
nis [21] has presented a randomized algorithm based on linear program-
ming that achieves an expected approximation ratio of 0.67. Let us note
here that, although the algorithm in [21] achieves a slightly better worst-
case approximation ratio than the algorithms presented in this chapter,
we have chosen not to include it in our experimental comparison since our
focus is on deterministic and purely combinatorial algorithms.

3.1.1 Preliminaries

Let w : P — Q' be a function assigning positive rational weights to the
paths in some set . For any A C P, we will employ the notation w(A)
for the total weight of A: w(A) = } ., w(p). Similarly, for any set S of
subsets of £, we will employ the notation w(S) for the sum of total weights
of the elements of S: w(S) = > ,cg W(A). Note that, if S contains mutually
disjoint subsets of £, then w(S) = w(Jacs A).

We denote by |p| the number of edges of path p. Given a set of paths P
and a coloring thereof, the subset of # that is colored with color a; is
called the i-th color class of £ and is denoted by P(i). We will also use
the notation $9 for the subset of # that overlaps with path g, and $7¢ for
P\ P

Carlisle and Lloyd [22] give an exact algorithm for MAXPROFIT-PC in
chains that runs in O (kmlogm) time. In the sequel, we will often use this
algorithm as a subroutine for the algorithms that we present. We will refer
to this algorithm as the “Carlisle-Lloyd algorithm”.

3.2 Maich and Replace

We propose a novel algorithm for MAXPROFIT-PC in rings. The Match-and-
Replace algorithm is based on a popular technique used for rings, namely
to pick a separation edge and remove it from the ring. The set of requests
is then partitioned, with respect to the separation edge, into two subsets:
the subset of requests that use the separation edge, and the subset of re-
quests that do not use it. Observe that the latter subset can be regarded
as an instance of MAXPROFIT-PC in a chain, and thus it can be colored opti-
mally in polynomial time. After this step, the algorithm tries to color some
of the requests that use the separation edge, possibly sacrificing some of
the requests that have already been colored. To that end, it computes a

3.2. MATCH AND REPLACE 55

Algorithm 5 Match-and-Replace
Input: an instance (G, P, w, k) of MaxProrIT-PC, where G is a ring
1: Pick an arbitrary separation edge e of the ring; let £, be the set of paths
that use edge e and P, = P \ P..

2: Color the instance (G — e, P., w, k) optimally, using the Carlisle-Lloyd

algorithm for MaxProrIT-PC in chains.

3: Let P.(i) be the i-th color class of ., 1 < i < k (note that some color

classes may be empty).

4: Construct the weighted path compatibility graph H that corresponds to
the separation edge picked in Step 1 and the partial coloring obtained
in Step 2.

Find a maximum-weight matching M of H.
for all edges (P.(i), q) € M do

Uncolor all paths in £.(i)? and color path q € £, with color a;.
end for

® N a

maximum-weight matching on the corresponding weighted path compati-
bility graph.

Definition 3.1 (Weighted path compatibility graph). Let (G, %, w, k) be an
instance of MaXPRrRoOFIT-PC where G is a ring, and let e be a separation
edge partitioning the path set into P, and P. = P \ P. where P, is the
set of paths using edge e. For any partial coloring of the paths in P., the
corresponding weighted path compatibility graph is a weighted complete
bipartite graph H = (U, E), where

U={P():1<i<k}UP, (38.1)
and edge weights h : E — Q" are defined as follows:
h(Pc(1). q) = w(q) — w(P()7) . (3.2)

A detailed description of the algorithm is presented in Algorithm 5. We
prove below that this algorithm achieves an approximation ratio of % and
that the analysis that we provide is tight.

Theorem 3.2. Match-and-Replace is a %—approximation algorithm for the
MaxPRrRoOFIT-PC problem in rings.

Proof. Let OPT be the value of any optimal solution of the ring instance,
OPT, be the value of any optimal solution of the instance constrained to

56 MAXIMUM PROFIT WAVELENGTH ASSIGNMENT IN WDM RINGS

path set ., and OPT, be the value of any optimal solution of the instance
constrained to path set .. Because . and . form a partition of P,

OPT< OPT. + OPT,, . (38.3)

Let SOL. be the value of the solution obtained in Step 2 of the algorithm
(chain subinstance solution), and SOL be the value of the final solution.
Clearly,

SOL = SOL, + h(M) (3.4)

where h(M) is the sum of the weights of the edges that belong to the
matching M computed in Step 5 (recall that h is the edge weight function of
the weighted path compatibility graph H). The instance (G — e, P., w, k) is
solved optimally in Step 2. Therefore, taking also into account Equation 3.4
we have that:

OPT,. = SOL. < SOL . (3.5)

Let S = {P.(i) : 1 < i< k}, and Sy be the set of P.(i)’s that are matched
by M. Similarly, let $.j; be the paths in #, that are matched by M. Finally,
let K be the set of the ik most profitable paths of .. We will now show that

OPT, = w(K) < SOL . (3.6)

For the sake of analysis we will examine a solution SOL’ that Match-
and-Replace would have computed if it had chosen a matching M’ of a
subgraph H’ of H in Step 5. The bipartite graph H' has the same node set
and the same edge weight function as H, but only a subset of the edges
of H. More specifically, for every pair (P.(i), q): the edge (P.(i), q) is in H' if
and only if w(q) — w (P.(i)) > 0 and q € K. Let M’ be a maximum matching
in H', and let S, and P, be defined analogously for M’ as for M. Similarly
to Equation 3.4,

SOL = SOL, + h(M’) . (3.7)
Note that SOL. = w(S). We have:
AM) = w@Per)= Y, wPe(i)?) (3.8)
(P(D).q)eM’
= wPar)- Y, WEPM-w@HT) B9
(Pe(D).q)eM’
= WPew)-wSu)+ Y W@ . (B.10)
(Pe(D).@eM’

Equation 3.7 may then be rewritten as follows:

SOU = w(S\ Su) + w(Pew) + Y| wPe()™) . (3.11)
(Pe()).q)eM’

3.2. MATCH AND REPLACE 57

We observe that P, C K and therefore w (Pe)+ w (K \ Penr) = w(K), so
the last sum can be expanded in the following way:

SOL = w(S\ Sw) + w(K) — w(K \ Penr) + Z w(P()™) . (3.12)
(Pc(@).9)eM’

Observe also that for any P.(i) ¢ Sy and q ¢ P.r, there must be no
edge between them in H’, hence w (P.(i)) > w(q). Moreover, w (S \ Sy)
and w (K \ P.u) are sums with the same number of terms because |K| =
S| = k and |Syy| = IPe,M/|. These observations imply that w (S \ Syr) —
w (K \ Peu) > 0, therefore Equation 3.12 yields:

SOL > w(K) . (3.13)

Since H’ is a subgraph of H, M’ is a matching also for H, although
probably not a maximum-weight one. Therefore, h(M) > h(M’), which
implies, from Equations 3.4 and 3.7, that SOL > SOL. Combining this
last inequality with Equation 3.13, we obtain Equation 3.6.

By Equations 3.5 and 3.6, SOL is an upper bound on both OPT, and
OPT,, which together with Equation 3.3 gives:

PT
SOL > OT . (3.14)

O

Example 3.3 (Tight example for the approximation ratio of Match-and-Re-
place). Consider the MAXPROFIT-PC instance illustrated in Figure 3.1. There
is only one available color and three paths p,, p,, and ps. Paths p; and ps
are non-overlapping, while p, overlaps with both p, and ps. The profits of
the paths are: w(p;) = w(ps) = a and w(p,) = a+ 1, where a is an arbitrary
value. Assuming that edge e, as shown in Figure 3.1, is picked as sepa-
ration edge in Step 1, it is straightforward to verify that Match-and-Replace
will color path p, with the only available color, while the optimal solution
would be to color paths p; and ps. Therefore, the profit of the solution re-
atl

turned by the algorithm can be as bad as a fraction <= of the optimal, which
approaches % as a goes to infinity.

Time complexity of Match-and-Replace The most time-consuming part of
the algorithm is the maximum-weight matching computation of Step 5. The
compatibility graph H has O (k + m) nodes and O (km) edges; recall that m
is the number of paths and k is the number of available colors in the orig-
inal instance. Therefore, Step 5 takes O (km(k + m) + (k + m)? log(k + m))
time. Under the reasonable assumption that k < m, the time complexity
of the algorithm becomes O (m?(k + logm)).

58 MAXIMUM PROFIT WAVELENGTH ASSIGNMENT IN WDM RINGS

Figure 3.1: An instance of MaxProrFIT-PC in which the Match-and-Replace algo-
rithm performs as badly as possible. There is only one available color and three
paths, p;, ps, and ps with profits a, a + 1, and a respectively. Assuming that
Match-and-Replace picks edge e as separation edge in Step 1, it will color path py
for a profit of a + 1, while the optimal solution would be to color paths p; and ps
for a profit of 2a. The value of a is arbitrary.

3.3 Other Approaches for Approximating MaxProfit-PC

In this section we present three more algorithms for MaxProriT-PC, which
we call Best-Choice, Iterative, and MPLU-Greedy.

3.3.1 Best Choice

A second, more naive application of the separation edge technique involves
picking the best of the following two solutions:

1. the solution obtained by coloring optimally the paths that do not use
the separation edge, and

2. using one color for each of the k most profitable paths that use the
separation edge.

We call this algorithm Best-Choice and a detailed description is given in
Algorithm 6. We prove that this algorithm also achieves an approximation
ratio of 5 for MAXPROFIT-PC in rings.

Theorem 3.4. Best-Choice is an %—approximation algorithm for MAXPROFIT-
PC in rings.

3.3. OTHER APPROACHES FOR APPROXIMATING MAXPROFIT-PC 59

Algorithm 6 Best-Choice
Input: an instance (G, P, w, k) of MaxProrIT-PC, where G is a ring
1: Pick an arbitrary separation edge e of the ring; let £, be the set of paths
that use edge e and P, = P \ P..

2: Color the instance (G — e, P., w, k) optimally, using the Carlisle-Lloyd
algorithm for MAXPRrOFIT-PC in chains. Let k' be the number of colors
used in this partial coloring. Use the remaining colors, if any, for the
k — Kk’ most profitable paths in .. Let 4 be the set of colored paths.
Let P5 be the set of the k most profitable paths in ..
if w(?,) > w(Pp) then return the coloring obtained in Step 2 for ,.
else return the coloring that uses a different color for each path in $g.
end if

S

Proof. Let OPT be the value of any optimal solution of the ring instance,
OPT, be the value of any optimal solution of the instance constrained to
path set $. and OPT, be the value of any optimal solution of the instance
constrained to path set .. Since £. and P, form a partition of P,

OPT< OPT. + OPT,, . (3.15)

By Step 2 of the algorithm, w (#,) > OPT,. Moreover, by Step 3 of the
algorithm, w (Pg) = OPT,. Given the fact that SOL = max{w (Pa), w (Pz)},
it follows that:

OPT. < w(P4) < SOL , (3.16)
and
OPT, = w(Pp) < SOL . (3.17)
Combining Equations 3.15, 3.16, and 3.17, we get that
OPT
SOL> 5 (3.18)
O

Furthermore, observe that the MaxPRroriT-PC instance illustrated in
Figure 3.1 also serves as a tight example for the Best-Choice algorithm.

Time complexity of Best-Choice Step 2 requires O (kmlogm) time. The
selection of the k most profitable paths in Step 3 can be done in O (m)
time, by selecting the path with the (|P.| — k)-th smallest profit using a
known linear time selection algorithm which at the same time performs a
partition with the selected element as pivot (see e.g. [25, p. 189]). Therefore,
the overall time complexity of the algorithm is dominated by Step 2 and
is O (kmlogm).

60 MAXIMUM PROFIT WAVELENGTH ASSIGNMENT IN WDM RINGS

Algorithm 7 Iterative
Input: an instance (G, P, w, k) of MAXPROFIT-PC, where G is a ring
1: for all colors a; do
2: S, =0
3: for all paths p € £ do
4
5

Sp ={p}

Find a maximum-profit set of edge-disjoint paths that do not
overlap with p by running the Carlisle-Lloyd algorithm for MAXPROFIT-
PC on the instance (G — p, PP, w, 1), where G — p is the graph obtained
by removing all edges of path p from G; insert these paths in S,.

6 if w(S,) > w(S;) then

7: S =S5,

8: end if

9 end for

10: Color all requests in S; with color a;.
11: P=P\S;

12: end for

3.3.2 lterative

In this section we present an algorithm that iteratively colors a maximum-
profit subset of non-overlapping requests. This algorithm is based on a
known maximum coverage technique that also applies to coloring problems
(see e.g. Wan and Liu [75], Erlebach et al. [35], or Awerbuch et al. [6]). We
will refer to this algorithm as Iterative. Iterative works as follows: during
each iteration i it computes for each path p a maximum-profit subset S, of
non-overlapping paths that contains p. Finally, the set S, with maximum
profit is colored with color a; and is removed from .

In order to compute S, it suffices to solve MaxProrFIT-PC in the following
instance: (G—-p,P™P, w, 1), where G — p is the graph obtained by removing
all edges of path p from G. Observe that this instance is a chain instance
and can be solved optimally with the Carlisle-Lloyd algorithm. The solution
of this instance, together with path p, constitutes the set S,. We give a
detailed description of the algorithm in Algorithm 7.

It has been observed by Erlebach et al. [35] that a straightforward adap-
tation of the technique of Awerbuch et al. [6] can be used to prove that the
Iterative algorithm achieves an approximation ratio of 1 — é for the cardi-
nality version of MAaXPROFIT-PC, where all requests have profit equal to 1.
It turns out that the analysis goes through for the case of non-uniform
profits as well. We present the proof below for the sake of completeness.

3.3. OTHER APPROACHES FOR APPROXIMATING MAXPROFIT-PC 61

Theorem 3.5. Iterative is an (1- é)—approximation algorithm for MAXPROFIT-
PC in rings.

Proof. Let {G,P, w, k) be an input to the Iterative algorithm, and t; = w(S;),
1 < i < k, be the total profit of the paths colored with color a; during the
i-th iteration of the algorithm. Let OPT be the total profit of an optimal
solution.

We first prove that, foranyj: 1 <j < k:
J 1V

tizOPT-(l—(l—E)) . (3.19)
=1

£

Equation 3.19 certainly holds for j = 1: there is at least one set of non-
overlapping edge-disjoint paths with total profit at least OTPT , and the Itera-
tive algorithm finds the largest such set during the first iteration. Assum-
ing that Equation 3.19 holds for j = s — 1, we get:

s s—1
Zt" — t+ t (3.20)
i=1 i=1
> OPT-Y<
> t + =1 1 (3.21)
i=1 k
s—1
1 OPT
= (1=2=}. t+ —— 3.22
(1-g) 2o 3:22
s—1
> (1—1)-OPT-(1—(1—1))+O—PT (3.23)
k k k
= OPT. (1 — (1 - —)) (3.24)

Therefore, Equation 3.19 holds for all j between 1 and k. By setting
J = k in Equation 3.19 we get:

gtiZOPT-(l—(l—%)k)2(1—1)-OPT, (3.25)

e

that is, the solution returned by the Iterative algorithm is at least a fraction
of 1 — é ~ 0.632 of the optimal. O

Time complexity of Iterative The time complexity of Step 5 of the algorithm
is O(kmlogm), and in the worst case at most km iterations of the in-

ner loop are needed. Therefore, the total time complexity of Iterative is
O (k*m?logm).

62 MAXIMUM PROFIT WAVELENGTH ASSIGNMENT IN WDM RINGS

Algorithm 8 MPLU-Greedy
Input: an instance (G, P, w, k) of MaxXPRoFIT-PC
1: Sort the paths p € £ in order of non-increasing ratio ul)T(}lj)'
2: for all paths p € P (in the order of Step 1) do
3: If there is some color g; that can be assigned to p, color path p with
color a;.
4: end for

3.3.3 Greedy

We present a natural greedy heuristic for MAXPROFIT-PC. The key idea is
that the more edges a path uses, the more likely it is to block other, possibly
more profitable paths from being added to the solution. On the other hand,
a path may be so profitable that it is worth picking it in the solution, despite
its length. Translating these observations into an algorithm, we end up
with the following approach: consider the paths in non-increasing order of
the ratio of their profit over their length; if there is an available color for
the current path, color it—otherwise drop this path. We call this algorithm
Most Profit per Length Unit Greedy, for short MPLU-Greedy (Algorithm 8). It
is very fast and easy to implement but, as we show below, there is no
constant p, 0 < p < 1, such that the profit of the solution returned by the
algorithm is guaranteed to be at least a fraction p of the optimal. Note that
the algorithm works in any network topology, not just in rings.

Example 3.6 (Non-constant approximation ratio of MPLU-Greedy in rings).
Consider the instance of MaxPRroriT-PC that is illustrated in Figure 3.2.
There is only one available color, and two overlapping paths, p, and p.,
with w(p,) = £ — 1 and w(ps) = 1. The length of the paths p, and p, is ¢
and 1, respectively. The MPLU-Greedy algorithm will first consider path p,
and color it with the only available color. This will result in the path p;
remaining uncolored. The total profit of this solution is 1. On the other
hand, the optimal solution would use the only available color to color path p,
and obtain a profit of — 1. This implies that the solution returned by the
algorithm can be as bad as a fraction e—% of the optimal. Given that ? can be
arbitrarily large, the algorithm can be made to perform arbitrarily badly.

Time complexity of MPLU-Greedy A simple implementation of the algorithm
requires O (nmk) time.

3.4. NUMERICAL RESULTS 63

-1
l

Figure 3.2: An instance of MaxProrIT-PC in which the MPLU-Greedy algorithm
performs badly. There is only one available color and two paths, p; and ps with
profits £—1 and 1 respectively, and length £ and 1 respectively. The MPLU-Greedy
algorithm will color path p, for a profit of 1, while the optimal solution would be
to color path p; for a profit of # — 1. The value of ¢ is arbitrary.

3.4 Numerical Results

3.4.1 Experimental Setup

We implemented all algorithms in C++, making use of the LEDA™ class
library of efficient data types and algorithms. All source files were compiled
with the Borland™ C++ 5.5 for Win32 compiler, set to generate fastest
possible code. We relied on LEDA routines and classes for graph, array,
list and priority queue operations including sorting and finding maximum-
weight matchings in bipartite graphs. The experiments were run on a
Pentium™ 4 clocked at 3.2GHz with 512MB of memory.

Instance packs An instance pack is a set of 50 randomly generated in-
stances (G, P, w, k) of MaxProrFIT-PC, where G is a ring, specified by the
following parameters:

e the number n of nodes in the ring,
e the number m of requests in the set P,
e the number k of available colors,

e an upper bound W on the profit of the requests, and

64 MAXIMUM PROFIT WAVELENGTH ASSIGNMENT IN WDM RINGS

e the manner in which paths are generated, specified either as uniform
or as gaussian:u:o.

Each instance in the instance pack is defined on a ring with n nodes. There
are k available colors. The path set £ of the instance has cardinality m,
and the profit of each path in % is selected uniformly at random from the
set {1,..., W}. The path itself is generated in one of two ways:

o If the mode of generation is uniform, the two endpoints of the path are
selected independently uniformly at random from the node set of the
ring. The edges actually used by the path are the edges that connect
the first endpoint to the second one, in the clockwise direction.

¢ If the mode of generation is gaussian:u:o, then the first endpoint of
the path is selected uniformly at random from the node set of the ring.
Subsequently, the length of the path is selected at random, following
the normal distribution with mean u and standard deviation o. The
path spans as many edges as its length in the clockwise direction,
starting from the first endpoint.

For each instance pack that we generated, we executed each algorithm
on all instances of the pack and measured the average execution time and
the average profit of satisfied requests. Furthermore, for each of these
values we calculated a 95 percent confidence interval which is shown on
the plots.

In each one of the figures discussed below (Figures 3.3, 3.4, 3.5, 3.6,
and 3.7), we present the results corresponding to several instance packs.
In each of these instance packs, we keep four of the above parameters fixed
and let one of them vary in order to exhibit the effect of this parameter on
the execution time and on the profit of satisfied requests.

Note that execution times were measured using the timer class of the
LEDA package, which does not provide routines for measuring exact pro-
cessor time. However, we ran the experiments on a dedicated machine and
kept background processes at a minimum.

Computing an upper bound on OPT In order to obtain an estimation of the
performance of our algorithms we use the following upper bound on the
value of an optimal solution:

OPT< miEn{OPTe + OPT,} , (3.26)

3.4. NUMERICAL RESULTS 65

where OPT, is the total profit of the k most profitable paths using edge e,
and OPT, is the optimal solution of the MaxProrIT-PC instance that con-
tains only the paths that do not use edge e. The latter is computed using
the Carlisle-Lloyd algorithm, as discussed earlier.

3.4.2 Discussion

A first observation is that all algorithms perform considerably better than
their theoretical guarantee. Indeed, we have included a curve showing
the computed upper bound (UB) in our figures and it turns out that all
algorithms manage to satisfy a good fraction of an optimal solution, often
much better than the theoretically predicted.

In the experiments of Figure 3.3, we compare all algorithms for variable
number of nodes ranging from 4 to 16 (typical values for SONET rings),
with the number of requests being ten times the number of nodes. The
number of available wavelengths is fixed to 8. The endpoints of each re-
quest are chosen uniformly at random. The profit of each request is chosen
uniformly at random from {1,...,10}. We observe that Iterative achieves
the best performance, closely followed by Match-and-Replace which is a
remarkably faster algorithm. MPLU-Greedy performs quite well, although
there is no constant bound on its approximation ratio. Best-Choice has no
particular merits, but serves as a good basis in order to exhibit the improve-
ment achieved by Match-and-Replace. In Figure 3.4, experiments with a
wider variance of profits than the ones in Figure 3.3, namely between 1
and 100, result in a similar ranking of the algorithms in terms of achieved
profit. Observe that, in some cases in Figure 3.4, Match-and-Replace even
outperforms the Iterative algorithm (for example in the instance pack with
m = 350).

In the experiments of Figure 3.5 the load is comparable to the number
of wavelengths and this explains the good performance of all algorithms
(except Best-Choice). In particular, the average load is around 20 for ev-
ery 100 requests and thus there are enough wavelengths to color almost
all paths, especially for number of requests up to 300.

In the experiments of Figure 3.6 only one endpoint of each request is
chosen uniformly at random and the other endpoint is determined in such
a way so that the length of the request follows the normal distribution with
mean 8 and standard deviation 1. In these experiments MPLU-Greedy
appears competent and Iterative displays noticeable superiority. This be-
havior can be explained if we take into account that the length of paths
is about half the cycle and thus with high probability each color can be
used for at most two paths. This fact favors Iterative, which has fewer

300

T T
Match and Replace ——+—
Best Choice +--x---
lterative :-----
MPLU-Greedy &
UB --m-

260

240

220

200

profit

180

160

120 |

100

807 1 1 1 1

10 12
of nodes

Figure 3.3: Instance pack parameters: n ranges from 4 to
W = 10, endpoints: uniform.

14 16

16, m = 10n, k = 8,

18000 T T T T T
Match and Replace ——+— _
Best Choice ---x--+ T
Iterative :--*--- e
MPLU-Greedy 8- W
16000 uB --m-- - .

14000

12000

profit

10000

8000 F .
6000 1 1 1 1 1
200 250 300 350 400 450

of requests

500

Figure 3.4: Instance pack parameters: n = 100, m ranges from 200 to 500,

k=80, W = 100, endpoints: uniform.

3.5. CONCLUSIONS 67

2600

T T
Match and Replace +——+—

Best Choice ---x---
Iterative :-----!
2400 MPLU-Greedy & T
UB --m- A

2200

2000

profit

1800

1600

1400

1200

1000 1 1 1 1 1
200 250 300 350 400 450 500

of requests

Figure 3.5: Instance pack parameters: n = 100, m ranges from 200 to 500,
k =80, W = 10, endpoints: gaussian:20:2.

limitations on the path combinations it tries.

Figure 3.7 illustrates a comparison of the running time of the algo-
rithms. We observe that Iterative is thousands of times slower than Match-
and-Replace, which has comparable performance in terms of achieved
profit. Best-Choice is somewhat faster than Match-and-Replace. MPLU-
Greedy is several times faster than Best-Choice.

3.5 Conclusions

To evaluate the experimental results we take into consideration the ob-
tained profit as well as the time performance. Taking into account both
measures we first remark that Match-and-Replace should be the algo-
rithm of choice for practical purposes, since it achieves one of the best
performances with respect to the obtained profit, and at the same time
its time requirements are reasonably low. In most cases Iterative pro-
duces marginally better solutions than Match-and-Replace, but its time
consumption could be prohibitive. On the other hand, if time efficiency is
crucial it would also make sense to consider MPLU-Greedy, which is a very
fast algorithm with acceptable performance. Taking into account both per-

180 T T T T
Match and Replace ——+— P
Best Choice ---x--+ I — —-
170 | lterative :----- - . _
MPLU-Greedy 8- L ome T
160
2
150
¥
140
S 130 i
o
120 E
110 | B B T i
RS S %/-/—/—/"T' -
100 e 4
90 + .
80 1 1 1 1
100 120 140 160 180 200

of requests

Figure 3.6: Instance pack parameters: n = 16, m ranges from 100 to 200, k = 8,
W = 10, endpoints: gaussian:8:1.

100 . . : . ,
Match and Replace ——+—
Best Choice ---x---
lterative +--%---
MPLU-Greedy 8- . e Hemmeennernee 5
10 - e - i
e
£
1 L -
Z
o 0.1]
£
- + B
—/f - e
001 oS Fmmmm ¥ % 3
i ; o o
el e .
0.001 i
iy
le-04 L 1 1 1 L
200 250 300 350 400 450 500

Figure 3.7: Instance pack parameters: n = 100, m ranges from 200 to 500,

of requests

k=80, W = 100, endpoints: uniform.

3.5. CONCLUSIONS 69

Table 3.1: An empirical ranking of the algorithms for problem MaxProriT-PC with
respect to their performance in the experiments in terms of attained profit.

Algorithm Attained profit Approximation ratio
Iterative . 0.0.0.¢ 0.632
Match-and-Replace . 0.0, 0.5
MPLU-Greedy 2.0.0.¢ non-constant
Best-Choice * 0.5

Table 3.2: An empirical ranking of the algorithms for problem MaxProriT-PC with
respect to their performance in the experiments in terms of time efficiency.

Algorithm Time efficiency Time complexity
MPLU-Greedy 1.2.0.0 ¢ O (nmk)
Match-and-Replace **% O (m?(k+logm))
Best-Choice * %k O (kmlogm)
Iterative * O (I*>m? logm)

formance with respect to profit and time efficiency, as they were assessed
from the experimental results, we rank all four algorithms in Tables 3.1
and 3.2. We also include the theoretical bounds on the approximation
ratio and time complexity for reference.

Chapter 4

Non-cooperative Wavelength
Assignment in Multifiber Optical
Networks

4.1 Introduction

The need for efficient access to optical bandwidth has given rise to the
study of several optimization problems in the past years. One of the most
well-studied among them is the problem of assigning a path and a color
(wavelength) to each communication request in such a way that paths of
the same color are edge-disjoint and the number of colors used is mini-
mized. Nonetheless, it has become clear that the number of wavelengths
in commercially available fibers is rather limited—and will probably remain
such in the foreseeable future. Fortunately, the use of multiple fibers has
come to the rescue.

In a multifiber optical network, a physical link may be implemented with
more than one optical fibers deployed in parallel between the endpoins of
the link. Naturally, this boosts the available bandwidth. More importantly,
it allows for several requests using the same wavelength to be routed on the
same physical link, provided that each one uses a different fiber. However,
fibers are not unlimited either, therefore it makes sense to minimize their
usage. This is particularly interesting from the customer’s point of view,
for example in situations where one can hire a number of parallel fibers
for a certain period and the cost depends on that number.

To this end, several optimization problems have been defined and stud-
ied, the objective being to minimize either the maximum fiber multiplicity
per edge [4, 3, 2] or the sum of these maximum multiplicities over all edges

71

72 NON-COOPERATIVE WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL NETWORKS

of the graph [62, 35, 76]; in another scenario the allowed fiber multiplicity
per edge is given and the goal is to minimize the number of wavelengths
needed [53, 49, 35].

In this chapter we consider a non-cooperative model, where each re-
quest is issued by a user who tries to optimize her own fiber usage by se-
lecting the most appropriate wavelength, taking into account the choices
of other users. This model is mainly motivated by the fact that centralized
control in large scale networks may be either infeasible or impractical. We
assume that each user is charged according to the maximum fiber mul-
tiplicity that the user’s choice incurs. More specifically, a user will be
charged according to the maximum number of paths that share an edge
with her and use the same wavelength. We consider as social cost the max-
imum fiber multiplicity that appears on any edge of the network. Minimiz-
ing this quantity is particularly important in cases where fibers are hired
or sold as a whole, hence the maximum number of fibers needed on an
edge determines the total cost; further motivation can be found in papers
that address the corresponding optimization problem (see e.g. [4, 3, 2]).
Here we focus on situations where routing is unique (acyclic topologies)
or pre-determined—as happens in many practical settings, for example in
cases where there are specific routing constraints such as a requirement
to use lightpaths that have been set in advance, or shortest-path routing.

We formulate the above model by defining the class of SELFISH PATH
MULTICOLORING (S-PMC) games: a game is defined in terms of a graph, a
set of paths, and the number of colors k. Each player controls a path in
the graph and has to choose a color for that path from the set of available
colors W = {a,,...,a}. A player is charged according to the maximum
multiplicity of her color along her path. We consider as social cost the
maximum color multiplicity per edge, i.e., the maximum number of paths
of same color that use an edge.

It is worth mentioning that path multicoloring problems can be used
to model situations that arise in various practical settings not necessar-
ily limited to optical networking. For example, our model may also find
applications in communication networks where packets are transmitted
using time-division multiplexing. In this case, colors represent timeslots
and a color’s multiplicity determines the number of frames it takes for each
user of the corresponding timeslot to transmit a single packet. Therefore,
the social cost of our model is proportional to the total number of frames
needed for all users to complete their transmissions, assuming they all
possess the same number of packets.

In the rest of this chapter, we first give an overview of related work
and then move on to present our results on SELFISH PATH MULTICOLORING

4.2. RELATED WORK 73

games [8]. We show an upper bound on the convergence rate of Nash
dynamics for S-PMC games, and observe that the price of stability is always
equal to 1. We also show how to efficiently compute a Nash equilibrium of
minimum social cost for S-PMC games in rooted trees, i.e. games in which
each communication request lies entirely on a simple path from some fixed
root node to a leaf. For S-PMC games in stars, we prove that a known
approximation algorithm for a related optimization problem actually gives
an %-approximate Nash equilibrium.

For general graphs, we obtain two upper bounds on the price of anar-
chy: the first, which is not hard to show, is equal to the number of available
colors. The second, which requires more involved arguments, is equal to
the length of a shortest path with maximum disutility in any worst-case
Nash equilibrium. For both bounds we provide matching lower bounds. In
fact, we prove that these bounds hold even in trees.

Then, we move on to specific network topologies and show that for S-
PMC games in stars the price of anarchy is equal to 2. We also provide
constant bounds on the price of anarchy for a broad class of S-PMC games
in chains and rings, namely for all games with L = Q(k?), where k is the
number of available colors and L is the maximum load among all edges of
the network. On the other hand, for any € > 0 we exhibit a class of S-PMC
games in chains (and rings) with L = @(k?> ¢) for which the price of anarchy
is unbounded.

In order to show our upper bounds, we demonstrate path patterns that
must be present in any Nash equilibrium, while for the lower bounds we
employ recursive construction techniques.

4.2 Related Work

Arguably, the most important notion in the theory of non-cooperative
games is the Nash equilibrium (NE) [60], a stable state of the game in
which no player has incentive to change strategy unilaterally. A fundamen-
tal question in this theory concerns the existence of pure Nash equilibria
(PNE). For various games [37, 67, 56, 74, 58, 36] it has been shown that
a pure Nash equilibrium exists or can be found with the use of potential
functions. A standard measure of the worst-case quality of Nash equilib-
ria relative to optimal solutions is the price of anarchy (POA) [46], which
has been extensively studied for load balancing games [46, 54] and other
problems such as routing and facility location [37, 68]. A second known
measure related to Nash equilibria is the price of stability (P0S, defined
in [5].

74 NON-COOPERATIVE WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL NETWORKS

SELFISH PATH MULTICOLORING games are closely related to a variation of
congestion games [19, 13] where a player’s cost is determined by her max-
imum latency instead of the usual cost which is the sum of her latencies.
Next, we briefly explain the relation of those models to ours.

In [19] the authors study atomic routing games on networks, where
each player chooses a path to route her traffic from an origin to a desti-
nation node, with the objective of minimizing the maximum congestion on
any edge of her path. They show that these games always possess at least
one optimal pure Nash equilibrium (hence the price of stability is 1) and
that the price of anarchy of the game is determined by topological prop-
erties of the network; in particular they show that the price of anarchy
is upper-bounded by the length of the longest path in the player strat-
egy sets and lower-bounded by the length of the longest cycle. Some of
our results extend to their model, since our model mimics traffic routing
in the following sense: we may consider a multigraph, where we replace
each edge with k parallel edges, one for each color. Each player’s strategy
set then consists of k different source-destination paths, corresponding to
the k available colors in the original model. A further generalization is
the model of Banner and Orda [13], where they introduce the notion of
bottleneck games. In this model they allow arbitrary latency functions on
the edges and consider both the case of splittable and unsplittable flows.
They show existence, convergence and non-uniqueness of equilibria and
they prove that the price of anarchy for these games is unbounded. Both
models are more general than ours; however our model fits better into the
framework of all-optical networks for which we manage to provide, among
others, smaller upper bounds on the price of anarchy compared to the
ones obtained by [19, 13], as well as a better convergence rate to Nash
equilibria.

Selfish path coloring in single fiber all-optical networks has been stud-
ied in [16, 15, 44, 57]. Bilo and Moscardelli [16] consider the convergence
to Nash equilibria of selfish routing and path coloring games. Later, Bilo
et al. [15] considered different information levels of local knowledge that
players may have for computing their payments in the same games and
give bounds for the price of anrchy in chains, rings and trees. The exis-
tence of Nash equilibria and the complexity of recognizing and computing
a Nash equilibrium for selfish routing and path colorings games under
several payment functions are considered by Georgakopoulos et al. [44].
In [57] upper and lower bounds of the price of anarchy for selfish path col-
oring with and without routing are presented under functions that charge
a player only according to her own strategy.

4.3. PRELIMINARIES 75

4.3 Preliminaries

Given an undirected graph G = (V, E), a set P of simple paths defined on G,
andaset W = {ay, ..., a.} of available colors, recall that we use the notation
L(e) for the load of edge e, i.e., the number of paths that use edge e, and
the notation L for the maximum of these loads, i.e., L = MaX.g L(e).

Given, additionally, an assignment of a color to each path we define the
following notation:

Definition 4.1. 1. u(e,) will denote the multiplicity of color ¢ on edge e,
i.e. the number of paths that use edge e and are colored with color c.

2. u. will denote the maximum multiplicity of any color on edge e:

Ue = Maxu(e, c) . 4.1)
cewW

3. Umax Will denote the maximum multiplicity of any color over all edges:

Hmax = TE%Xﬂe . (4.2)

4. u(p, ¢) will denote the maximum multiplicity of color ¢ over the edges
of path p:
u(p, ¢) = maxu(e, c) . (4.3)
eep

It will be clear from the context which specific coloring we are referring
to when we use the above notation.

The minimum punax that can be attained by some coloring of the paths
in # will be denoted by uopr, i.€:

HopT = méin Umax » (4.4)

where € ranges over all possible colorings. We note immediately the follow-
ing:

Fact 4.2. No coloring can achieve a umnax that is smaller than [%I Thus,

porr 2 [] - (4.5)

76 NON-COOPERATIVE WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL NETWORKS

43.1 Game-Theoretic Model

We now proceed to define the class of selfish path multicoloring games and
subclasses thereof.

Definition 4.3 (Selfish path multicoloring games). A selfish path multicol-
oring game is the following strategic game defined in terms of an undirected
graph G, a set P of simple paths defined on G, and an integer k > O:

e Players: there is one player for each path in P. For simplicity, we will
identify a player i with the corresponding path p;.

e Strategies: a strategy for player i is a color c¢; chosen from the set
W ={a,,...,a} of available colors. We say that color c; is assigned
to path p; or that path p; is colored with color c¢;. All players share
the common set of available strategies W. The strategies chosen by
all players will be collectively described by a vector € = (cy, ..., qpy).
Vector ¢ will be called a strategy profile.

e Disutility: given a strategy profile € = (cy, ..., cp), the disutility f; :
W"' — N of each player i is defined as follows:

Ji(© = u(pi. c) . (4.6)

We denote this game by (G, P, k).

Definition 4.4. S-PMC will denote the class of all selfish path multicoloring
games (G, P, k).

We will use the notation S-PMC(G) to denote a subclass of S-PMC that
contains only games satisfying a property G. For example, G may constrain
the graph on which the game is defined to belong to a specific graph class,
etc.

Following the standard definition [60], we say that a strategy profile
¢ =(cy,...,qp)is a pure Nash equilibrium (PNE), or simply Nash equilibrium
(NE) for our purposes, if for each player i it holds that:

ﬁ(Cl,. . ,Cl{, ce ,C|gD|) Zﬁ(Cl, [O ,C|;D|) , (47)

for any strategy c; € W. Moreover, following the definition of [23], we say
that a strategy profile ¢ = (cy, . . ., qp)) is an e-approximate Nash equilibrium
if for each player i it holds that:

filer,....cl...oep) 2 (=€) filer,....cioeau) S (4.8)

4.3. PRELIMINARIES 77

for any strategy c; € W. In a Nash equilibrium, no player has incentive to
change strategy unilaterally, while in an e-approximate Nash equilibrium
a unilateral change of strategy may result in reducing the player’s cost by
no more than a factor of 1 — ¢.

Definition 4.5 (Blocking edges). If € is a strategy profile for an S-PMC game
{G.P.,w) and p; € P, we say that an edge e € p; is an a;-blocking edge for
p:. or that it blocks a; for p;, if

e a) > fi(e) - 1 . (4.9)

Furthermore, the u(e, a;) paths that are colored with a; and use edge e are
called a;-blocking paths for p;.

Intuitively, an a;-blocking edge for p; “blocks” p; from switching to color
a; because if it did, the new disutility of path p; would be at least (e, ;) +
1 > £i(¢), no better than its current choice. The following characterization
of the Nash equilibria of S-PMC games is immediate from the definitions:

Property 4.6 (Structural characterization of S-PMC Nash equilibria). A
strategy profile for an S-PMC game (G, P, k) is a Nash equilibrium if and
only if every path p € P contains at least one a;-blocking edge for p, for every
color a;.

Definition 4.7 (Social cost). The social cost of a strategy profile € for an
S-PMC game is defined as follows:

sc(e) = m%xlie = Hmax - (4.10)
ec

It is straightforward to verify that the social cost of a strategy profile
coincides with the maximum player disutility in that profile:

Sc(c) = maxu, = maxfi(c) . (4.11)
ecE EP
We define [to be the maximum social cost over all strategy profiles that

are Nash equilibria:
= maxsc) . (4.12)

Cis NE
Following the standard definitions [46, 5], the price of anarchy (POA) of a
game (G, P, k) is the worst-case social cost in a Nash equilibrium divided

by popr, i.e.: A
MaX: s ne SC(C) __H

HopPT HopT

POAKG, P, k)) = (4.13)

78 NON-COOPERATIVE WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL NETWORKS

The price of stability (PO of a game is the best-case social cost in a Nash
equilibrium divided by poprt:

iNz 15 NE SC(C)

POS(G, P, kY) = (4.14)

HopPT

The price of anarchy (resp. stability) of a class of games S-PMC(G) is the
maximum price of anarchy (resp. stability) among all games in S-PMC(G).

4.4 Price of Stability, Existence, and Convergence to
Nash Equilibria

In this section we prove that any S-PMC game (G, %, k)) has at least one
Nash equilibrium of optimal social cost. Moreover, we prove that starting
from an arbitrary strategy profile, any Nash dynamics converges to a Nash
equilibrium in at most 4" steps. For our purposes, the Nash dynamics is a
sequence Gy, C1, . . . of strategy profiles where in each profile ¢;,; exactly one
player has a different strategy compared to ¢;, and that player has strictly
improved her disutility compared to her disutility in ¢;. In other words,
the Nash dynamics is a sequence of cost-improving moves of the players in
which no particular order of play or fairness criteria is assumed a priori.
For any strategy profile ¢, we define a disutility vector D(¢) as follows:

D(©) = (d.(©),....d(9) , (4.15)

where d;(¢) stands for the number of players whose disutility is exactly i
(note that the disutility of any player cannot be O and cannot be greater
than L). We use lexicographic-order arguments similar to those in [19, 13]
to show that starting from an arbitrary strategy profile any Nash dynamics
converges to a Nash equilibrium of smaller or equal social cost.

Theorem 4.8. For any game (G, P, k) in S-PMC:
1. the price of stability is 1, and

2. any Nash dynamics converges to a Nash equilibrium in at most 4"
steps.

Proof. Let < denote the standard lexicographic ordering between vectors of
equal size. If € is a strategy profile for (G, P, k)) that is not a Nash equi-
librium and ¢ is the strategy profile resulting from a profitable deviation
of some player i, we show that D (¢’) < D (¢) and hence sc(¢’) < sc(c). This

4.5. COMPUTING OPTIMAL AND APPROXIMATE EQUILIBRIA 79

implies that any Nash dynamics starting from a minimum-cost strategy
profile converges to a Nash equilibrium of the same social cost, thus the
price of stability is 1.

Since player i profited by deviating, her disutility in the new strategy
profile ¢ is reduced by at least 1. Some of the players that overlap with p;
and are colored with ¢; may also have their disutilities reduced by exactly 1.
The original disutility of any such player p; must be f(¢) = fi(¢). The
deviation of player i may result in an increase by exactly 1 of the disutility
of some players who overlap with p; and are colored with c;. For any player
pr whose disutility is increased, fi(¢) < fi(¢) — 2 otherwise p; would be
blocked from switching to pi’s color. The disutilities of all other players
remain the same. It is clear now that all players whose disutility changed
have a new disutility smaller than f;(¢). Therefore D(¢") < D(c).

Regarding the rate of convergence, observe that for any strategy profile ¢
the sum of the components of the corresponding disutility vector D(¢) is:

L
Y@ =P . (4.16)
i=1

independent of ¢. So, the number of distinct disutility vectors is at most
equal to the number of distinct ways in which |P| indistinguishable balls
can be thrown in L bins. This number is known to be

(|50|+L—1

P) < oPHL-1 g1 (4.17)

because L < |P|. The convergence of any Nash dynamics in at most this
many steps follows immediately. O

45 Computing Optimal and Approximate Equilibria

Due to Theorem 4.8, computing a Nash equilibrium of minimum social cost
is at least as hard as the corresponding optimization problem in which
one is given a graph G, a set of simple path # defined on G, and the
number of available colors k and is asked to color all paths in £ so that
the maximum fiber multiplicity pmax is minimized. As noticed in [62], this
problem is NP-hard in general graphs, in fact even in rings and stars.
Therefore, it is also NP-hard to compute an optimal Nash equilibrium even
in the case of rings and stars. However, we show that there exists an
efficient algorithm that computes optimal Nash equilibria for a subclass of
S-PMC(TReE). Furthermore, we show that we can use a known algorithm

80 NON-COOPERATIVE WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL NETWORKS

Algorithm 9 Computing pure Nash equilibria for the class of S-
PMC(RoOOTED-TREE) games.
Input: an S-PMC(RoOOTED-TREE) game (G, P, k)
1: Find a node r such that each path in # lies on some path from r to a
leaf.

2: for all edges e € E in order of non-decreasing distance from r, breaking
ties arbitrarily do

3: for all uncolored paths p that contain edge e do

4: Pick a color ¢ such that u(e, ¢) is minimum in the current color-
ing, breaking ties arbitrarily.

5: Color p with color c.

6: end for

7: end for

for PATH MULTICOLORING in stars to compute approximate Nash equilibria
for S-PMC(STAR) games.

Definition 4.9. We define S-PMC(R0OOTED-TREE) to be the subclass of S-
PMC that contains games (G, P, k)) with the following property:

“G is a tree and there is a node r such that each path in P lies
entirely on some simple path from r to a leaf.”

A similar class of graphs has been defined and studied as an intersec-
tion model for “rooted directed edge path graphs” in [59].

We will say that a path in a tree rooted at r starts on edge e, if e is the
edge of the path that lies closest to r. Algorithm 9 is a polynomial-time
algorithm that computes optimal Nash equilibria for S-PMC(ROOTED-TREE)
games. We proceed to prove its correctness.

Lemma 4.10. Given an S-PMC(RooTED-TREE) game as input, Algorithm 9
computes a pure Nash equilibrium.

Proof. Let {G, P, k) be the input game, where G = (V,E) is a tree, and r be
the root of the tree. Also, let ey, ..., gg be the order in which Algorithm 9
considers the edges of E. We will prove that the outer loop of Algorithm 9
maintains the following invariant:

“after the j-th iteration, all those paths in # that have been
colored are in Nash equilibrium.”

In the rest of the proof, we will denote by y;(e, ¢) the multiplicity of color ¢
on edge e after the j-th iteration of the outer loop of Algorithm 9. Likewise,

4.5. COMPUTING OPTIMAL AND APPROXIMATE EQUILIBRIA 81

we will denote by 1;(p. ¢) the maximum multiplicity of color c over all edges
of path p after the j-th iteration, i.e.,

w(p.c) = negxuj(e, c) . (4.18)

For j = 1, the multiplicity of any color on edge e, is either [%J or [%1
These numbers differ by at most 1, so the paths that start on edge e, are
in Nash equilibrium after the first iteration.

For j > 1, assume that the invariant holds after the (j — 1)-st iteration.
Note that all paths not using e; are not affected by the j-th iteration. We
shall now prove that no path that uses edge ¢; has incentive to change
color after the j-th iteration.

First, let p be a path that had not been considered before, i.e., p starts
on edge e;. Let a; be its color. Consider now the path, say p’, that was last
colored with a; during the j-th iteration. At the moment p’ was colored, q;
must have been a minimum multiplicity color, therefore e; is an a-blocking
edge for p for all a # a;.

Now, let p be a path that uses edge ¢; and is already colored at the
beginning of the j-th iteration with color a;. We distinguish between two

Ccases:

o w(p.a;)) = pi1(p. a;): since the paths starting on edges e;,...,e_;
were in Nash equilibrium after the (j—1)-st iteration, for each color a #
a; there was an a-blocking edge along path p. These edges are still
a-blocking for p, because the maximum multiplicity of a; along p has
not changed. Therefore, p has no incentive to change color.

e w(p. a;) > pui_1(p. a;): this increase in the maximum multiplicity of a;
along p must be due to one or more new paths starting on edge e
being colored with a;. Let p’ be the last of these paths that was
colored with a;. At the moment p’ was colored, a; must have been a
minimum-multiplicity color. Therefore, for any color a we have that

ye. a) > e, a)—1 . (4.19)

But y(e;, a;) = w(p. a;), because the maximum multiplicity of a; along
p has just increased at edge ¢;. This implies that edge ¢; is an a-
blocking edge for p for any a # a;, therefore p has no incentive to
change color.

O

Theorem 4.11. Given an S-PMC(RoOTED-TREE) game as input, Algorithm 9
computes an optimal Nash equilibrium of minimum social cost.

82 NON-COOPERATIVE WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL NETWORKS

Proof. By Lemma 4.10, the output of the algorithm is a Nash equilibrium.
Let p; be the maximum multiplicity of any color after the j-th iteration of the
outer loop of Algorithm 9. Using the notation of the proof of Lemma 4.10,
W = maxmaxy(e;, a) . (4.20)
1<i<j aew
It is implicit above that for any j > 1, if u; > p;_, then y; changed due to the
coloring of certain paths on e;, hence

L(ej)w : 4.21)

uj=u(ej,ai)={ P

for some color a;. If the maximum multiplicity pmax was last increased while
processing edge e, then by the previous remark the algorithm produces a
coloring with cost

_ K [LW (4.22)
HUmax = e .
Since [%-I is a lower bound for uppT, it turns out that
L
Mmax = Mopr = [E} . (4.23)
Therefore, edge e must be a maximume-load edge and the strategy profile
output by the algorithm must have social cost equal to [ﬂ O

Theorem 4.12. There is a polynomial-time algorithm that computes a %
approximate Nash equilibrium for any S-PMC(STAR) game.

Proof. Let {G, P, k)) be a game in S-PMC(StAR). We use the polynomial-
time approximation algorithm presented in [62] for the PATH MULTICOLORING
problem in stars, which returns a coloring of the paths in £ with the
following property: for any edge e and any color c there exist integers a, b

such that a b a b
Ll suea < [T+]3] @24

and a + b = L(e). This implies that if ¢ is the strategy profile returned by
the algorithm, then any player i who deviates resulting in a new strategy
profile ¢’ reduces her cost by at most 1. Therefore,

1
Si(©)
In the worst case f;(¢) = 2, hence ¢ is an %—approximate Nash equilibrium.
O

H(E@) =A@ -1= (1)'fi(E) : (4.25)

4.6. TIGHT UPPER BOUNDS ON THE PRICE OF ANARCHY 83

4.6 Tight Upper Bounds on the Price of Anarchy

In this section we provide two upper bounds on the price of anarchy of any
S-PMC game (G, P, k) and we show that both of them are tight. The first
bound is determined by a property of the network, namely the number of
available wavelengths. The second bound is more subtle, as it depends on
the length of paths with the highest disutility in worst-case Nash equilibria.
We prove that these bounds are tight even for the class S-PMC(ROOTED-
TREE), and asymptotically tight for the class S-PMC(RoOOTED-TREE: A = 3),
i.e., the subclass of S-PMC(RoOOTED-TREE) that contains games defined on
graphs with maximum degree 3.

Lemma 4.13. The price of anarchy of any S-PMC game (G, %P, k) is at
most k.

Proof. Let € be a worst-case Nash equilibrium of {G, P, k), hence SC(c) = [i.
Clearly, i« < L and since the minimum social cost over all strategy profiles
is uopt = [%I it turns out that uopt > £. This implies that uo%m < k. O

The next lemma is an arithmetical lemma that will be used in the proof
of Lemma 4.15.

Lemma 4.14. Let

A

I

h,w,z)= ————— . 4.26
f(i w, 2) "Hl—%](ﬁ_l)-‘ (4.26)
It holds that f(it, w,z) < z, forallp > 2, w> 1, and z > 2.
Proof. We distinguish the following four cases:
e w=xkzand i = Az, for some x> 1, A> 1:
Nz Nz
f(Az, kz, z) = "1+K(ﬁz—1)-‘ = [fi - K_—1" =z . (4.27)
Kz Kz
The last equality holds because 4—-1 < A - “;Kzl <A
e w=rzand t=7Az+ x, forsome k > 1, A>0, 1< y<z-1:
Az+ x Nz+x
Sz + x. xz 2) = = = : (4.28)
K(Az+x—1 KY—K+1
E=SNE
Because y > 1 and y < z— 1, we get that
z+z—1 z+z-1
f(Az + x,xz,z) < / _ 7 <z. (4.29)

[ﬂ+L§;1_ A+1

84 NON-COOPERATIVE WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL NETWORKS

e w=kz+eand it = Az, forsome k>0, 1 <e<z-1,A>1:

Az Nz
f(Az, kz+ @, 2) = [1+(K+l)(ﬂz—l)] - [ﬂ+ Mz—g) _ L1 , (4.30)
KZ+6 KZ+e KZ+e
where the first equality follows from the fact that [%-I = [K + f-l = Kk+1.
Because ﬂ(KZZ—;:) > 0 we get that
Nz
Sz kz+6.2) S T 4.31)
|- %]
and because Kz’i@ < 1 we have [ﬁ - Kz’frg,-l = 1 and therefore
z
f(Az,kz + @, 2) < % =z. (4.32)
ew=xz+eand i = Az+ y, forsome x >0, 1 <e<z-1,A>0,
1<x<z-1:
B Nz+ x B Nz+ x
f(ﬂZ TXKZ+ @ Z) - "1+(K+1)(ﬁz+x—l)" - "ﬂ n ﬂ(z—q:)+1c(x—1)+x" ' (433)
KZ+e KZ+¢

Because z> ¢, x > 1 and y < z— 1, we get that

-1
f(Az+ ., kz+ @, 2) < ﬂz;% <z. (4.34)

O

Lemma 4.15. For any worst-case Nash equilibrium ¢ of an S-PMC game
(G, P, k) and for any p; € P with f;(¢) = Sc() = u, the price of anarchy of
G, P, k) is at most equal to the length of p;.

Proof. Let e be an edge of p; where the color ¢; chosen by p; appears with
maximum multiplicity fi: u(é, ¢;) = it. Let z denote the length of path p; and
let e, ..., e, be the edges that p; uses, apart from e. For 1 <j < z-1,
let x; be the number of colors that are blocked for p; on ¢; and let y be the
number of colors that are blocked for p; on é. Since € is a Nash equilibrium,
it must be that

X1+...+x,,+y=>2k-1. (4.35)

If it is the case that z = 1, i.e. p; uses only edge e, then & must block
all colors for p; except ¢;. This implies that the load of edge e is:

L@ >a+(k-1)GE-1)=kii—k+1 . (4.36)

4.6. TIGHT UPPER BOUNDS ON THE PRICE OF ANARCHY 85

Therefore, the minimum social cost over all strategy profiles satisfies:

sz&k%%?Lﬂﬁm%;ﬂ=ﬁ- (4.37)

We conclude that the price of anarchy in this case is equal to 1.
Now, assume that z > 2. We will prove that

k7, .
L21+me—l). (4.38)
z
First, observe that
L(€) > u+y(h—1) (4.39)
and, for1 <j<z-1,
Lie)>1+x(n—1) . (4.40)
Ify> [’;‘1 — 1, then
Lzuazﬁ+qfﬂ—1yﬁ—n:1+[Ekﬁ—n. (4.41)
z z

If, on the other hand, y < [f-l — 1, then Equation 4.35 gives

k
x1+...+xz_12k—1—y2k—[—}+1. (4.42)
z
This implies that there is some x; such that

k—[’ﬂ+1 k—’;‘—1+1_E

Xo > > . (4.43)
z—1 z—-1 z
Since x; is an integer, it must be that xs > [’;‘-I Therefore,
k-
LzL@gzl+Lﬂm—1). (4.44)
z

We conclude that Equation 4.38 holds in any case. So, the price of
anarchy is bounded as follows:

A

< H o * -, (4.45)

h
HREE=0h

The last inequality holds by Lemma 4.14. O

POA({G, P, k)) = L
HopT

86 NON-COOPERATIVE WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL NETWORKS

As an immediate corollary of Lemma 4.15, we derive the following upper
bound on the price of anarchy:

Corollary 4.16. The price of anarchy of any S-PMC game { G, P, k)) is upper-
bounded as follows:

POA((G,P.k») < min_ min_|p . (4.46)
esc@)=i Lfi()=q
Lemma 4.17. The upper bounds of Lemma 4.13 and Corollary 4.16 are
tight even for the class of S-PMC(ROOTED-TREE) games.

Proof. We first define a recursive construction of an S-PMC game and a
Nash equilibrium for this game. The construction is illustrated in Fig-
ure 4.1.

For any z > 1 and A > 1, let A,(A) be the following S-PMC game with z
available colors: there are /1 paths of color a; and length z, starting at the
root node u,, which branch out into A branches, one on each branch. Let
us call these the primary paths for A,(A). On any of the z — 1 edges of
each such branch, one color is blocked for the primary path. The A -1
blocking paths of each edge branch out into an A,(A — 1) game. They
become primary paths for this copy of A,(A — 1). The root node for the
J-th recursive copy of A,(A — 1) on the i-th branch is node w;; (node u;; is
common for all branches). The base case of this recursive construction is
A_,(0), which is a degenerate game with no paths and no available colors,
defined on a graph consisting of a single node. We have included the
explicit construction for z = A = 3 in Figure 4.2.

Claim 4.18. For any z > 1, the construction A,(z) is an S-PMC(ROOTED-
TREE) game in Nash equilibrium, in which all of the following are equal to z:
the number of available colors k, the maximum load L, the maximum color
multiplicity umax, and all path lengths.

Proof (of Claim). 1t is straightforward to verify that A,(z) belongs to the
class S-PMC(RooTED-TREE); the root node is the root node u, of the first
level of the recursive construction. The game is in Nash equilibrium by
construction, since every path contains one blocking edge for every color
other than its own. The number of available colors is equal to z by defini-
tion. The maximum multiplicity yumax = z appears on the edge incident to
the root node of A,(z). The maximum load L = z appears on all the edges
of the first level of the construction. Finally, all path lengths are equal to z
by construction. The claim is proved. O

Figure 4.1: The construction A,(A) for the proof of Lemma 4.17. The thick lines
represent the edges of the underlying graph, and the thin lines represent the paths
defined on the graph. The color and multiplicity of each group of paths is written
next to that group. Each shaded box represents a recursive copy of A,(A — 1).

Figure 4.2: The construction A3(3), as described in Lemma 4.17. Different
colors are shown by different line styles. Solid black lines represent the edges of
the underlying graph.

4.6. TIGHT UPPER BOUNDS ON THE PRICE OF ANARCHY 89

%@

Figure 4.3: Alternate branching in the construction of Lemma 4.17 in order to
achieve an asymptotically tight lower bound for the price of anarchy on graphs
with maximum degree 3.

o

By Theorem 4.11, the optimal strategy profile for A,(z) has social cost

UOPT = [ﬂ = 1. Therefore, the ratio l’jg‘s: is equal to z for this Nash equilib-
rium, hence the price of anarchy is at least z. O

Lemma 4.19. The upper bounds of Lemima 4.13 and Corollary 4.16 are
asymptotically tight even for the class of S-PMC(ROOTED-TREE) games with
maximum degree 3.

Proof. The construction presented in Lemma 4.17 can be modified so that
the maximum degree of the resulting tree is 3, with only a logarithmic
increase in the length of the paths: whenever a multitude of d paths that
use the same edge spread out into d branches so that only one of them
lies on each branch, let the branching not be effected immediately, but let
instead the paths carry on for one additional edge in the direction in which
they are headed, then split them onto 2 new edges (half of the paths on
each edge), then split the paths of each edge onto 2 new edges, and so on
until each path is singled out. An example of this modification for d = 4 is
illustrated in Figure 4.3.

It is easy to see that this process results in a tree with maximum de-
gree 3 and increases the length of the paths by at most [logd]. If we take
care to add edges where needed so that all paths have the same length
and carry out this process for the whole tree, then we result in an S-
PMC(RoOTED-TREE) game and a Nash equilibrium thereof with the same
properties as the construction in Lemma 4.17, except that the maximum
degree is 3 and the length of all paths is z’ = z + O(logz). It turns out,
then, that POA> z =2z — O (logz) = 2’ — o(2Z'). O

We summarize the results of Lemmata 4.13, 4.15, 4.17, and 4.19 in
the following theorem:

Theorem 4.20. The price of anarchy of any S-PMC game (G, P, k) is upper-
bounded both by k and by

min min |p;| . 4.47
escE)=f ifi(@=p P ()

90 NON-COOPERATIVE WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL NETWORKS

These bounds are tight for the class S-PMC(RoOTED-TREE) and asymptoti-
cally tight for the class S-PMC(RoOOTED-TREE: A = 3).

Theorem 4.21. The price of anarchy of the class S-PMC(STAR) is 2.

Proof. Lemma 4.15 implies an upper bound of 2 on the price of anarchy,
since the length of any simple path defined on a star cannot be larger
than 2.

For the lower bound, we can easily modify the construction that ap-
pears in Lemma 4.17 to yield a family of S-PMC(StAR) games with price
of anarchy 2. More specifically, observe that in any game A,(A) we have
only players (paths) of length 2. Such a game can be embedded in a star
with exactly the same number of edges as follows: fix an isomorphism
@ between the edges of the tree and the edges of the star, and for every
path p = {e, €'} defined on the tree, define a path p = {¢(e), p(e')} of the
same color on the star. It is clear that the paths we just defined on the
star overlap with each other in exactly the same way as the original paths
overlapped on the tree. Therefore, the game on the star is in Nash equi-
librium with pmax = /1, whereas the optimal solution has maximum color

multiplicity popt = g O

4.7 The Price of Anarchy on Graphs with Maximum
Degree 2

In this section we study the price of anarchy of path multicoloring games on
chains and rings, and we prove a constant upper bound for a broad class
of S-PMC(RING) games with L = Q(k?). Notice that this class essentially
encompasses all S-PMC(RING) games of practical importance, as the num-
ber of wavelengths is limited in practice due to technological constraints,
whereas L can be arbitrarily large depending on network traffic. For the
sake of completeness, we show that the price of anarchy may become un-
bounded if the network designer opts to provide ample wavelengths to the
users, i.e., when L = o(k?).

We begin by showing a more involved necessary condition for Nash
equilibria of S-PMC(RING) games than the one we have already seen in
Property 4.6. Let (G, %, k) be an S-PMC(RING) game. Given a coloring
¢=(c1,...,qp), let P, (¢) € P denote the set of paths colored with color g,
that use edge e € E. We have, by definition, |Pe‘ai(6)| = u(e, a;). For the
sake of simplicity, in the rest of the section we will write P, ,, instead of
P, (). Furthermore, let [e, €] denote the clockwise arc starting at edge e
and ending at edge €.

4.7. THE PRICE OF ANARCHY ON GRAPHS WITH MAXIMUM DEGREE 2 91

Lemma 4.22 (Structural property of S-PMC(RiNG) Nash equilibria). Given
an S-PMC(RiNG) game and a coloring € thereof which is a Nash equilibrium,
for every edge e and color a; there is an edge-simple arc [e;, e;] with the
following properties:

1. for every color a; # a;, arc [e;, e;] contains an edge which is an a;-
blocking edge for at least half of the paths in P, ,,, and

2. for every edge €’ of the arc ey, e,] it holds that

[Pl

5 (4.48)

pe’,ai N pe,ai| 2

Proof. Since the game is in Nash equilibrium, by Property 4.6 every path
p € P, must have at least one g;-blocking edge, for every color q; # a;.
For a fixed color g; # a;, consider the two a;-blocking edges for some path
in P, ,, that are closest to edge e clockwise and counter-clockwise. It is not
hard to see that for at least one of these two edges, call it b(q;), the following
property holds: the arc [e, b(a;)] or the arc [b()). €] is contained in at least
[@-‘ of the paths in P, .. In case that there is only one g;-blocking edge
for all paths in P, ,,, then the property holds a fortiori for this edge.

For every color a; we pick one such edge b(a;). If the above property
holds for arc [e, b(a;)], we add b(q;) to set B*, otherwise we add it to set B™.
We now claim that a clockwise traversal of the ring starting at edge e will
first encounter all edges of B" and then all edges of B™. Indeed, if one edge
b~ of B™ lies before one edge b* of B* on this clockwise traversal, this would
imply that b~ is traversed by the [%-‘ paths that contain the arc [e, b*]
and thus b~ should also belong to B*.

The above discussion implies that if we define e, to be the last edge of
B* and e to be the first edge of B~ encountered in this clockwise traversal,

then the edge-simple arc [e, e,] satisfies the conditions of the Lemma. [

Definition 4.23. We define [e;, e/]p,, to be the arc that is obtained by ap-
plying Lemma 4.22 for path set P, ,,. We shall also denote the extreme edges
of the arc by e, (P, ,,) and e, (P.4,).

4.7.1 A Constant Bound on the Price of Anarchy for Small Number
of Wavelengths

In this section we prove a constant upper bound on the price of anarchy
of S-PMC(RING) games with L = Q(k?); denote this class by S-PMC(RING:

92 NON-COOPERATIVE WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL NETWORKS

L = Q(k?)). This provides an upper bound on the price of anarchy of any
S-PMC(CHAIN: L = Q(Ic?)) game as well, since every game defined on a chain
can be trivially embedded in a ring topology.

We first employ the structural property of S-PMC(RING) Nash equilibria
(Lemma 4.22) in order to establish the existence of a heavily loaded edge
in S-PMC(RiING) games with i > k. To that end, we make use of a recursive
argument. In particular, we define e to be the edge where the maximum
color multiplicity occurs in a worst-case Nash equilibrium, and without
loss of generality we consider this color to be a;. We then observe that
all g;-blocking paths for paths in P;, must also be in equilibrium, hence
recursively there exist as-blocking paths for them, for all as # a; and so on.
In order to establish the desired load we prove a bound on the number of
these paths that use the same edge.

Lemma 4.24. In every S-PMC(RING) game (G, P, k)) with i > k there is an
edge with load at least %{ .

Proof. Consider a coloring ¢ which is a worst-case Nash equilibrium for
G, P, k). We define P; to be the set of paths P:,, which induce the social
cost fi. For i > 2 we define P; to be the set of g;-blocking paths for the path
set P;_;, for some color g; not appearing in any of the path sets Ps, s < i,
with the following property:

[el, er]pl. - [el’ er]P,-_l , (449)

if such a path set exists. If more than one path sets with the desired
property exist, we arbitrarily pick one of them.
Let e; be the a;-blocking edge for P,_;. Based on the definition of P; as
a set of blocking paths for path set P,_; we can easily show that u(e;, a;) >
fi—i+ 1. The application of Lemma 4.22 for color g; and edge e; yields that
for every edge e € [e, e;]p, we have that
n—i+1

ule. @) > — (4.50)

Furthermore, since Equation 4.49 holds for all s < i, the load of each edge
e € [e, e]p, is at least }, p(e, @), where q; now ranges over the colors of
all path sets P, s < i. Hence, for every edge e € [¢e, e;]p, we have that

S fi-s+ 1
IOEDWICEIEDY % . 4.51)
a; s=1

Let now n be the first integer for which no such path set P, exists
(see Figure 4.4) and consider the path set P,_;. Since we are in Nash

4.7. THE PRICE OF ANARCHY ON GRAPHS WITH MAXIMUM DEGREE 2 93

e,,(Pl) 61(P2) ez‘(Pnfl) er(‘Pnfl) er(Pz) eT(Pl)
o1 l : : P | l Level 1
(e %) [| P I j Level 2
and? IPn—l [I Level n — 1
an | T T ‘
; ;

Level n
Qo [| [
I

Figure 4.4: The path structure implied in the proof of Lemma 4.24. For the sake
of simplicity, paths in P; are assumed to be colored with a;, for i < n.

equilibrium we know that there exist a-blocking edges for paths in P,_;,
for every color a. We restrict our attention to the k — n + 1 colors which
have not yet appeared in any P, for s < n— 1. Let g; be one of these
colors. Consider now an g;-blocking edge e, such that e, € [e e] p,., (by
Lemma 4.22 such an edge must exist). Wq now have that, at least half of
the g;-blocking paths in P, ., i.e. at least “_—g“ paths, extend beyond one
of the extreme edges e/(P,-;) and e.(P,-;) of the arc [e,, e,]p,_, (otherwise we
would have picked P, 4 to be P,). This means that for at least half of these
k — n+ 1 blocking path sets, their paths leave the arc from the same edge,
incurring on it an additional load of % . “_T”“

Thus, the total load of this edge is at least

n-1 A~ A~ A~
-i+1 k—-n+1 -n+1 k -k+1
YE K i AN WY il e V1)
— 2 2 2 4 4
Since 1 > k the above sum is at least %. O

We are now ready to prove a constant upper bound on the price of
anarchy of games in S-PMC(RiNG: L = Q(k?)).

Theorem 4.25. The price of anarchy of any game in the class S-PMC(RING:
L = Q(k?)) is bounded by a constant.

Proof. Let G, %P, k) be a game in S-PMC(RiNG: L = Q(k?)). We distinguish
between two cases:

o If 1 > k, then by Lemma 4.24 we get L > %. This implies that

>

LS

= LopT > fz‘ — POA((G, P, k) < 4 . (4.53)

|

94 NON-COOPERATIVE WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL NETWORKS

e If 1 < Ik, then we can bound the price of anarchy as follows:

~ ~ 2

POA((G. P. k) =
0A({ » oL T

, (4.54)

where we used successively the facts that popr > % and it < k.

The last inequality, combined with the fact that L = Q(k?), implies
POA({G, P, k)) =0 (1).

O

4.7.2 Unbounded Price of Anarchy for Large Number of Wave-
lengths

In this section we show that for any fixed ¢ in the range O < ¢ < 1, there
exists an infinite family of S-PMC(CHAIN: L = ©(k> ¢)) games whose price of
anarchy is Q(k2). This implies that the price of anarchy can get arbitrarily
large when the number of available colors increases, therefore the price
of anarchy is unbounded for the classes S-PMC(CHaIN: L = o(k?)) and
S-PMC(RING: L = o(k?)).

Theorem 4.26. For any fixed €, 0 < € < 1, there exists an infinite family of
games in S-PMC(CHAIN: L = @(k?>~®)) with price of anarchy Q(k?).

Proof. We first observe that for any fixed ¢ > 0, given an integer p > 4 we
can construct an S-PMC(CHAIN: L = O(k*¢)) game and a strategy profile
thereof that is a Nash equilibrium, with the following properties:

e the number of available colors is k = [p“ﬁ-l,
e the maximum load is L = O(p?), and

e the maximum multiplicity of any color is pmax = p.

Construction For given values of the parameters ¢ and p, we describe the
construction of an S-PMC(CHAIN) game, using the path set P(A, @) illus-
trated in Figure 4.5 as a building block. In what follows we describe the
structure of P(A, a;) along with a coloring of its paths that we will prove to
be a Nash equilibrium.

We define P(A, a;), with AC W = {a,,...,a} and q; € W\ A, to be a
path set consisting of:

4.7. THE PRICE OF ANARCHY ON GRAPHS WITH MAXIMUM DEGREE 2 95

; ' main paths

secondary path

—
i
ES
=
I
V)
)
Q
—
=
ol
ES
=
I
)

AU{a}al) Au{a}au AU{a}al Au{a}ozu

w — |A] — 1 copies: w — |A| — 1 copies:
P(AU{wi},), for each aj € W\ (AU{ai}) P(AU{ai}, o), for each oy € W\ (AU {ei })

Figure 4.5: Recursive construction of path set P(A, g;) for a; € W \ A.

e the main paths: these are the p — |A| paths of color g;, arranged as
shown in the top part of Figure 4.5, overlapping all together on some
edge (henceforth called the central edge for P(A, a;)) with half of them
extending to the left of this edge and the other half extending to the
right of it,

e the secondary paths: these are the p —|A| — 4 paths of color a;, placed
below the main paths as shown in Figure 4.5, and

e the copies of P(AU {a;}, aj), for every ¢ € W\ (AU {a;}), one copy

of P(A U{a;}, aj) to the left of the central edge of P(A, @;), and one
copy to the right. We say that P(A, a;) contains each of the copies
P(A U{ai}, aj) and we write P(A, a;) > P(A U{a}, aj). The reflexive
and transitive closure of > is denoted by >*.

We now claim that the S-PMC(CHAIN) game 8 = (G, P(0, a;), [p”fsb),
where G is a chain long enough to accommodate all paths of P (0, a,), is a
game in S-PMC(CHAIN: L = ©(k®>™¢)) with the desired properties. In what
follows we briefly sketch the proof of this claim.

In order to prove that the coloring described above is indeed a Nash
Eequilibrium for all paths in P(0, a,), we first note that for every P(A, a;)
its main and secondary paths lying to the left (resp. right) of the central
edge are blocked from switching to any color g; ¢ A (with a; # a;) by the left
(resp. right) copy of P (A Ul{a, aj), where color g; appears with multiplicity
p—|A|-1. Furthermore, it is easy to show (using a straightforward induction
on the size of A) that they are also blocked from switching to any color
a; € A by the main and secondary paths of some path set P(A’, ;), with

96 NON-COOPERATIVE WAVELENGTH ASSIGNMENT IN MULTIFIBER OPTICAL NETWORKS

P(A’, @) >* P(A, a;). Since every path of P (0, a,) is a main or secondary path
for some path set P(A, a), it follows that all paths are in Nash equilibrium.
Finally, for the coloring described, the maximum multiplicity appears for
color a, on the central edge of path set P(0, a;) and is indeed equal to p.

We then notice that, since the number of colors k = [,0“%_;‘ exceeds that
of the maximum multiplicity pmax = o, the recursive construction of P(0, a,)
will eventually reach a trivial base case, which incurs an additional load of
O(1). It is now easy to show that the maximum load is indeed L = ®(0?).
This completes the construction.

Now, the class S-PMC(CHAIN) is a subclass of S-PMC(RooTED-TREE),
therefore by Theorem 4.11 the optimal strategy profile for the game defined
above has social cost uopt = [%I hence pLopt < % + 1. Additionally, the cost
of the worst-case Nash equilibrium must be ;i > pmax. The price of anarchy
for this game is therefore:

i Mmax I Umax

POA(B) = > -
®) popt E£+1 L+k

(4.55)

It is easy to see that, if umnax L, and k satisfy the above properties, then
the last expression grows like @(pz_fs) as p goes to infinity, yielding the

promised asymptotic lower bound of Q(k?). O

Notice that there is no sense in considering games where the number
of wavelengths is larger than the number of paths, i.e. k > |P|, because
the price of anarchy would then be trivially equal to 1. It is easy to verify
that the construction of Theorem 4.26 allows us to create instances with
arbitrarily large ratio kfz with the number of paths increasing accordingly
in any case thus ensuring that k < |P|.

4.8 Conclusions

In this chapter we conducted a thorough study of the price of anarchy
in the SELFISH PATH MULTICOLORING model for non-cooperative wavelength
assignment in multifiber optical networks. The results we obtained in
Section 4.6 show that the price of anarchy can grow unbounded even in
simple optical networks of maximum degree 3. It seems that the player-
charging mechanism of this model is not strong enough to force players
into low-fiber-cost Nash equilibria.

On the other hand, the situation regarding networks of degree 2 seems
to be rather gratifying. Given the ever-increasing network traffic and the
fact that the number of available wavelengths in commercially deployed

4.8. CONCLUSIONS 97

optical fibers is not expected to grow in the near future, it makes perfect
sense to stipulate k = O (\/f) as a valid assumption for practical purposes.
Therefore, it is safe to conclude that the price of anarchy of our model is
bounded for rings and chains.

We have also shown that when the number of available wavelengths
increases beyond @(\/E) it is possible to construct SELFISH PATH MULTI-
COLORING games with unbounded price of anarchy. This may be compared
to the Braess paradox [17, 18], where the inclusion of a high-speed link in a
transportation network results in the deterioration of the solution reached
by the players.

Finally, stars, another important network topology, possess low-fiber-
cost worst-case Nash equilibria and we can even compute %—approximate
Nash equilibria for games in stars, in view of Theorem 4.12.

Chapter 5

Colored Resource Allocation Games

5.1 Introduction

We now present a general model for non-cooperative resource allocation.
In this model, the players have access to a set of resources, each one of
which comes in several different versions—one for each color. As is the case
in congestion games [67], each player can choose among various subsets
of the set of resources. However, the resources picked by a single player
must all be of the same color.

This class of games, under various social and player costs, can model
non-cooperative versions of routing and wavelength assignment problems
in multifiber all-optical networks. These games can be viewed as an exten-
sion of congestion games where each player has his strategies in multiple
copies corresponding to colors. When restricted to (optical) network games,
facilities correspond to physical links of the network and colors correspond
to wavelengths. The number of players using an edge in the same color
represents a lower bound on the number of fibers needed to implement
the corresponding physical link. The wavelength continuity constraint is
reflected in the model by the restriction we have placed on player strategy
spaces, i.e., that each player must pick resources of the same color. Hav-
ing this motivation in mind, we consider both the max player cost, where
the cost of a player is the maximum congestion over the resources she
uses, and the sum player cost, where the cost of a player is the sum of
the congestion of the resources she uses. For our purposes it suffices to
restrict our study to identity latency functions.

We estimate the price of anarchy of colored resource allocation games
under three different social cost functions. Two of them are standard in the
literature (see e.g. [24]): the first (max social cost) is equal to the maximum

99

100 COLORED RESOURCE ALLOCATION GAMES

Table 5.1: The price of anarchy of Colored Congestion Games (sum player cost).
Results for classical congestion games are shown in the right column.

Social cost Colored Congestion Games Congestion Games

SGax ®(%) ©(VN) 24]
SCGum 5 2 [24]

SGib © (Vic-TFI) —

Table 5.2: The price of anarchy of Colored Bottleneck Games (max player cost).
Results for classical bottleneck games are shown in the right column.

Social cost Colored Bottleneck Games Bottleneck Games

SGnax o (%) @ (N) [19]
SCum o) @ (N) [19]
Sav (1) -

player cost and the second (sum social cost) is equal to the sum of player
costs or, equivalently, the average player cost. The third one, which we will
call fiber social cost, is especially meaningful in the setting of multifiber all-
optical networks: it is equal to the sum over all facilities of the maximum
color congestion on each facility. Note that in the optical network setting
this function represents the total fiber cost needed to accommodate the
communication requests, hence it captures the objective of a well-studied
optimization problem ([62, 61, 3, 4]). Let us also note that the max social
cost function under the max player cost captures the objective of another
well known problem, namely minimizing the maximum fiber multiplicity
over all edges of the network [3, 49, 53], which we studied in depth in
Chapter 4. However, in Chapter 4 we focused on a fixed routing model
where the path on which each communiciation request is to be routed has
been decided in advance, and the only choice given to players was the
choice of wavelength. The model we study in this chapter allows players to
make routing decisions as well.

We derive tight bounds on the price of anarchy for Colored Resource
Allocation Games [9]. These bounds are summarized in Tables 5.1 and 5.2.
It can be shown that the bounds for Colored Congestion Games remain
tight even for network games.

Observe that known bounds for classical congestion and bottleneck

5.2. PRELIMINARIES 101

games can be obtained from our results by simply setting k = 1. On
the other hand one might notice that our games can be casted as classi-
cal congestion or bottleneck games with W |F| facilities. However, we are
able to derive better upper bounds in some cases by exploiting the special
structure of the players’ strategies.

5.2 Preliminaries

Definition 5.1 (Colored resource allocation games). A colored resource al-
location game is defined as a tuple {F, P, k, {E}icp)), where:

1. F is a set of facilities f;, 1 < i < |F].
2. P is the set of players. Let N denote the size of set P.
3. k is the number of colors. As usual, we will use W for the set of colors.

4. & C 2F is the set of possible facility combinations for player i. The
set S; = & X W is the set of available strategies for player i. We will
denote the facility combination chosen by player i by E; € &;, and the
color choice of player i by a; € W. We will then say that player i is
playing strategy A; = (E;, @;) € S;.

A strategy profile for the game will be denoted by avector A = (A,, ..., Ap|) of
player strategies. We will use the notation ny. (Fl) for the number of players
that use facility f € F with color c € W in the strategy profile A.

Depending on the player cost function we define two subclasses of col-
ored resource allocation games:

Definition 5.2 (Colored Congestion Games). A Colored Congestion Game
(CCQG) is a colored resource allocation game with sum player costs, defined
as follows for each player i € P:

Ci(A) =) neq (&) . (5.1)

ecE;

Definition 5.3 (Colored Bottleneck Games). A Colored Bottleneck Game
(CBG) is a colored resource allocation game with max player costs, defined
as follows for each player i € P:

C.(A) = maxn,,, (4) . (5.2)

ecE;

102 COLORED RESOURCE ALLOCATION GAMES

In the same manner as we did in Chapter 4, we will say that a strategy
profile is a pure Nash equilibrium (PNE), or simply Nash equilibrium (NE), if
no player can reduce her cost by changing strategy unilaterally. From the
definition of Nash Equilibrium we can derive the following two facts that
hold in Colored Congestion and Bottleneck Games.

Fact 5.4. IfA is a Nash equilibrium of a CCG game, then for any playeri € P

we have:
Ci(A) < > (nea; () +1) (5.3)

ecE]

forany E] € &, and for any a; € W.

Fact 5.5. IfA is a Nash equilibrium of a CBG game, then for any playeri € P
we have:
Ci(A) < max(neq (A) +1) . (5.4)

ecE;]

Jorany E; € &; and for any a; € W. Equivalently, forany E] € &; anda/ € W,
there is some e € E; such that

Ci(A) < nee (A) +1 . (5.5)

We note immediately the similarity of Equation 5.5 to Equation 4.9
which defines the blocking edges in Definition 4.5.

For each one of the two subclasses of colored resource allocation games
that we just defined, we will consider three different social cost functions.
The max player cost SGnax is given by

SCrax (A) = maxc; (A) . (5.6)
ieP
The sum player cost SGynm is given by
scum(A) =) Ci(A) . (5.7)
i€P
Finally, the fiber social cost SGj, is given by
sqiv (A) =) maxny, (4) (5.8)

acsw
feF

Let A" be a minimum-social-cost strategy profile for some colored re-
source allocation game G under some social cost SC Analogously to the
definition in Section 4.3.1, the price of anarchy (POA) of G is:

Maxs i, e SC(A)

sc(ﬁ*)

PoOA(G) =

(5.9)

5.3. COLORED CONGESTION GAMES 103

5.3 Colored Congestion Games

5.3.1 The Price of Anarchy for max Social Cost

Theorem 5.6. Under the social cost SGnax, the price of anarchy of any Colored
Congestion Game (F, P, k, {E;}iep) is O (\/g)

Proof. Let A be a Nash equilibrium and let A" be an optimal strategy profile.
Without loss of generality we consider the first player to have the maximum
cost, SGnax (K) =C (K) Thus, we need to bound C, (Fl) with respect to the

optimum social cost SGnax (A*) = MaXep C; (A*).

Let A] = (E}, a;) be the strategy of player 1 in A". Since A is a Nash
equilibrium, no player benefits by changing either her color or her choice
of facilities. Therefore, for any a € W:

1 (8)< X (rea(A)+ 1)< Dy ra(A)+ 1 (A) . 610

Let I C P be the set of players that use some facility e € E| in strategy
profile A. The sum of their costs in A is:

XaW > Ty 6.1
(Zees; Z:w f;e,a (3) (5.12)
N (k'minaeWE?e.el;{ ea (A)) (5.13)
el L)

1

The first inequality holds since a player in I might also use facilities not in
E], and the second inequality holds from the Cauchy-Schwarz inequality.
Let amin = arg Minew ZeeE; Meq (Zi) Thus we have:

2

> e (B)| < % > ci(A) . (5.15)

€€E] iel

> c(A) < g Z c (&) . (5.16)

From [24] we have:

104 COLORED RESOURCE ALLOCATION GAMES

/ -
k — 1 dashed paths| N :
over each edge h; I’ _ ! \ / \

Figure 5.1: A worst-case instance that proves the tightness of the upper bound,
depicted as network game. A dashed line represents a path of length ? connecting
its two endpoints.

Combining the above two inequalities we get:

* *

2
_ E .\ _|E .\ _5|E -
5 e ()] < Y () < S ()« 2 S)
eeE; iel ieP icP
(5.17)
Combining this with Equation 5.10 for a = amjn, we get:
Ci(A)<c (&) + J g% Z c(&) . (5.18)
ieP

—

Since|E;|§C1()andC() SGnax A

s(1+ w/ qunax (5.19)

O

), we finally get

Theorem 5.7. There exists an infinite family of Colored Congestion Games

(F, P, k, {E}iep) with social cost SGhay, that have price of anarchy Q (\/g)

Proof. We will describe the lower bound game as a network game. The
underlying network is illustrated in Figure 5.1. The game itself is a small
variation of the construction presented in [24].

In that network k major players want to send traffic from ny to n,.
For every i, 0 < i < ¢ — 1, there are (£ — 1)k minor players that want to
send traffic from node n; to node n;,,. In the worst-case equilibrium A all
players choose the short central edge, leading to social cost SGnax (A) = 2,
On the other hand, in the optimum strategy profile A", the minor players
are equally divided on the dashed-line paths and the major players choose

5.3. COLORED CONGESTION GAMES 105

the central edge. This leads to SCmaX(A'*) = ¢, and the price of anarchy is
therefore:

POA(«F,?",k,{&}iep)})=P=®(%) (5.20)

0

5.3.2 The Price of Anarchy for sum Social Cost

The price of anarchy for social cost SGm is upper-bounded by g as proved
in [24]. For the lower bound, we use a slight modification of the construc-
tion described in [24]. We have Nk players and 2N facilities. The facilities
are separated into two groups: {hy,...,hy} and {g;,...,gy}. The players
are divided into N groups of k players. Each group i has possible facility
combinations {h;, g;} and {gi1, hi_1, hi;1}. The optimal strategy profile A" is
for all players in the i-th group to select their first strategy and be equally
divided in the k colors, leading to SCsum(A*) = 2Nk. In the worst-case Nash
equilibrium A players choose their second strategy and are equally divided
in the k colors, leading to Scsum(ﬁ) = 5Nk. Thus, the price of anarchy of

this game is g and the upper bound remains tight in our model too.

5.3.3 The Price of Anarchy for fiber Social Cost

Theorem 5.8. Under the social cost SGi,, the price of anarchy of any Colored
Congestion Game {F, P, k, {E}icp) is O (Vi - |F|).

Proof. Let S be a strategy profile of the game and W = {w,. .., w} be the

set of colors. For a facility e € F, we denote by n, (g) the vector

1 (3) = (Reaor (3) -+ e (3) - (5.21)

In terms of the above vector we can write:

b (S) =), maxnea(S) = 3
ecF

ecF

ne (§)“ . (5.22)

From norm inequalities we have that

),
— 2 <
et

()

<

()

, (5.23)
2

(o)

106 COLORED RESOURCE ALLOCATION GAMES

therefore:

s (9)= BB <2 |2)= V71 [5 (9)

ecF ecF aceW ecF aeW
(5.24)

where the last inequality is a manifestation of the norm inequality ||X||, <
\/n||X||,, where X is a vector of dimension n. Now, from the first inequality
of Equation 5.23 we have:

sai (3 Z >onz, ZZ (5) . (5.25)

eeF acw ecF asWw

Combining Equations 5.25 and 5.24 yields:

1
\/E SCsum()<Sq'b \/_ \lscsum (5.26)

From [24] we know that the price of anarchy under the sum social cost

is g Let A be a worst-case Nash equilibrium under the fiber social cost

and let A" be an optimal strategy profile under the same social cost. From

Equation 5.26 we know that SGi, (;{) < \/W . SCsum(A) and SGi, (A*) >

%/_ scgum()Thus

Staum(A)
scsum(F*)

< iy 2

(5.27)
O

SQL@SW
SGi (A")

POA({F, P, k. {E}icp) =

Theorem 5.9. There exists an infinite family of Colored Congestion Games
(F, P, k, {E}iep) with social cost SGiy, that have price of anarchy Vk - |F).

Proof. Consider a Colored Congestion Game with N players, |F| = N facil-
ities and k = N colors. The possible facility combinations for each player
consist of all singleton facility sets, i.e., & = {{fi}. {2}, ..., {/n}}-

The above game has a worst-case Nash equilibrium with social cost N
when all players choose a different facility in arbitrary colors. On the other
hand, in the optimum strategy profile the players use as few facilities as
possible, filling up all colors of these facilities. This requires % facilities,
each of which contributes 1 to the social cost. Therefore, the optimum
social cost is % yielding a price of anarchy of k = vk - |F]|. O

5.4. COLORED BOTTLENECK GAMES 107

5.4 Colored Bottleneck Games

5.4.1 The Price of Anarchy for max Social Cost

Theorem 5.10. Under the social cost SGnhax, the price of anarchy of any
Colored Bottleneck Game {F, P, k,{E;}icp) is at most [%-‘

Proof. Assume that the social cost of a Nash equilibrium is strictly larger

than [%-‘ This implies that there is some player whose cost is strictly

larger than [

N
i
than [%W players. Since we are in Nash equilibrium, Fact 5.5 implies that
for every other color there must be some facility in this player’s chosen
facility combination used by strictly more than [%-I — 1 players. Since
players playing different colors are necessarily distinct, the above implies
the existence of at least (k — 1) - [%-‘ + [%-‘ + 1 > N + 1 players, which is a
contradiction.

Therefore, the social cost of any Nash equilibrium is at most [%-I Since
the minimume-cost strategy profile has cost at least 1, the claim is proved.

0

-I, so there is some facility-color pair used by strictly more

Theorem 5.11. There exists an infinite family of Colored Bottleneck Games
(F, P, k, {&E}iep) with social cost SGax, that have price of anarchy %

Proof. Consider the following class of CBG games. There are N players, N
facilities, and k colors, where N is an integer multiple of k. Each player i
has two possible facility combinations: &; = {{f}}. {f1,..../y}}. In a worst-
case Nash equilibrium, all players choose the second combination and they
are equally divided in the k colors. This leads to a player cost of % for each
player and thus to a social cost of % In the optimal strategy profile, all
players would choose their first strategy leading to player cost and social
cost equal to 1. Thus, the price of anarchy for this game is % 0

5.4.2 The Price of Anarchy for sum Social Cost

By Theorem 5.10, we know that in any Nash equilibrium A, the cost of any

player is C; (;{) < [%-‘ Moreover, it is not hard to see that in the minimum-

cost strategy profile A", SCsum(A*) > N. Therefore, the price of anarchy is
N1 N
san(d) = [?-I
The game we constructed in the proof of Theorem 5.11 can also be used
here to prove that the bound we just proved is tight.

upper-bounded by

108 COLORED RESOURCE ALLOCATION GAMES

5.4.3 The Price of Anarchy for fiber Social Cost

Definition 5.12. Let S be a strategy profile of a game (F, P, k, {E:}icp). We
define Eg to be the set of facilities used by at least one player in the strategy
profile S, i.e.
Es= U E, . (5.28)
ieP
Theorem 5.13. Under the social cost SGi,, the price of anarchy of any Col-

ored Bottleneck Game (F, P, k, {E}icp) is at most ||EA|| [%W where A is a

worst-case Nash equilibrium and A" is a minimum-cost strategy profile.

Proof. Let amax(€) denote the color with the maximum multiplicity at facility
e, in the worst-case Nash equilibrium A. Let i be a player that uses the
facility copy (e, amax(€)). Since C; (Zi) = MaXek, Ne.g, (Fl) it must hold that

Ne, amnax(e) (A) <G (A) In fact we can state the following general property: for
every e € F, there is some player i such that

Neanate) (A) < Ci(A) . (5.29)

We already know from Theorem 5.10 that for any player i, C;) [-|

since A is a Nash equilibrium. Moreover, it is clear that SCﬁb() |Ez
From the above we can conclude:

saip (A) _ B [Nw (5.30)

SGip (A*) - |Ex| . E

O

Theorem 5.14. There exists an infinite family of Colored Bottleneck Games

(F, P, k, {E}iep) with social cost SGi,, that have price of anarchy |Ei|| . [%-I

where A is a worst-case Nash equilibrium and A" is a minimum-cost strategy
profile.

Proof. We use a slight modification of the game used in Theorem 5.11. The
set of possible facility combinations of each player i is &; = {{fi}. {fi. .- .. fu}}s
for some M > N. In the worst-case Nash equilibrium all players will play
the second combination leading to SGip (Fl) =M- % and |Ez| = M. On the
other hand, in the minimum-cost strategy profile, all players will play the

first combination leading to SGi, (K) = N and |E3+| = N. Therefore, the price

of anarchy for this game is POA((F, P, k. {Eiep)) = 4 - ¥ = l'j;” T -

5.5. CONCLUSIONS 109

5.5 Conclusions

We have introduced colored resource allocation games, a class of games
which generalize both congestion and bottleneck games. The main feature
of these games is that players have their strategies in multiple copies (col-
ors). Therefore, these games can serve as a framework to describe routing
and wavelength assignment games in multifiber all-optical networks. Al-
though one might cast such games as classical congestion or bottleneck
games, it turns out that the proliferation of resources together with the
structure imposed on the players’ strategies allows us in some cases to
prove better bounds on the price of anarchy.

In our exposition, we have not considered the question of convergence
to Nash equilibria. Let us briefly note here that Colored Congestion Games
admit of exact potentials, since, as we said, they can be cast as regular
Congestion Games. Therefore, their convergence to a Nash equilibrium
in finitely many steps is guaranteed. In the case of Colored Bottleneck
Games, one can follow lexicographic-order arguments similar to the ones
used in the proof of Theorem 4.8, in order to show that these games also
admit a potential, albeit not an exact one. Therefore, convergence to a
Nash equilibrium is guaranteed in this case as well.

Regarding the bounds that we managed to show on the price of anar-
chy, one may say that these are mostly negative results. With the exception
of games with sum social and player costs where the price of anarchy is
constant, in all other cases the price of anarchy is unbounded. Especially
in the case of Colored Congestion Games, all of our lower bound construc-
tions can be recast as network games. Therefore, we know there exist
actual networks where the price of anarchy can be unbounded. On the
other hand, the constructions we give for Colored Bottleneck Games can-
not be seen as network games. This seems to give some hope that a more
detailed study of Colored Bottleneck Games defined on networks might
yield better bounds on the price of anarchy.

In both cases, it would be interesting to examine specific network
topologies and see which of them allow for better system behavior. Finally,
another direction would be to consider more general latency functions.
This would make sense both in the case where fiber pricing is not linear
in the number of fibers, and also in the case where the network operator
seeks to determine an appropriate pricing policy so as to reduce the price
of anarchy.

Chapter 6

Path Coloring Applied to a
Transportation Problem

In this chapter we deal with an interesting problem in transportation net-
works, that of scheduling a given set of routes on a transportation network
so that the minimum headway is maximized. The minimum headway is a
measure of the flexibility of the schedule with respect to perturbations of
the departure or arrival times of a small number of routes. The exposition
in this chapter aims to bring forward a fundamental connection between
the headway maximization problem and a path coloring problem that has
been thoroughly studied in the literature in view of its direct application
on wavelength assignment in WDM networks.

The purpose of this chapter is twofold. First, we study the complexity of
headway optimization and provide exact and approximation algorithms for
certain fundamental network topologies. Second, our arguments are per-
meated with the aforementioned underlying connection to path coloring,
which serves to highlight the applicability of path coloring models on a wide
and diverse range of network/scheduling problems, apart from the routing
and wavelength assignment problems in WDM networks which have been
our main focus throughout this thesis.

6.1 Introduction

In railway networks where trains use the same railway segment quite often
(e.g. metro) it would be desirable to schedule trains so as to guarantee an
ample time distance between successive trains that pass from the same
point of the network (in the same direction); this time distance is usually
called headway. Such a scheduling would result in a more delay-tolerant

111

112 PATH COLORING APPLIED TO A TRANSPORTATION PROBLEM

system. This is a particularly essential requirement in cases where there
are several intersecting routes that have to be carried out periodically and
the time limits are such that some route must start before the termination
of another route with which it shares a part of the network.

Here, we formulate this situation by introducing the PErioDIC METRO
SCHEDULING (PMS) problem: given a rail network with one line per direc-
tion, a set of routes (described as paths over the network graph), and a
time period, we seek to arrange the departure times of routes so that the
minimum headway is maximized. Although our motivation comes from
railway optimization, PMS may also describe other transportation media
timetabling problems.

We show [7] the NP-hardness of PMS by reduction from PATH COLORING
(PC), which is the problem of coloring paths in a graph with the minimum
number of colors so that intersecting paths receive different colors. We
further investigate the relation between the two problems and present exact
algorithms for chain and spider networks that rely on a reverse reduction
from PMS to PC. Moreover, we show that this technique also applies to
rings for which the time needed to traverse the ring is a multiple of the
given period. This results in a (/l)L—I;l)—apprO)dmation algorithm for such
instances, where p is the approximation ratio we can achieve for PC and
L is the maximum number of routes passing through any edge of the
network. For ring instances that do not satisfy this condition we present a
specifically designed algorithm that achieves an approximation guarantee
of é Finally, we show how to apply the path coloring technique to tree
networks where the time distances between stations are integer multiples
of the half of the period, resulting in a (ﬁﬁ)-approximation algorithm for
this topology as well. Our algorithms employ known algorithms for PC
[22, 55, 34, 39] as subroutines.

6.2 Related Work

To the best of our knowledge, PERIODIC METRO SCHEDULING has not been
studied before in the form of an optimization problem. The decision version
of PMS, namely the problem of guaranteeing a minimum headway not
smaller than a given threshold, can be described in terms of a generic
problem known as PERIODIC EVENT SCHEDULING PROBLEM (PESP) [72]. PESP
has been studied by several researchers, see e.g. [71, 51, 47, 50] and
references therein. However, we are not aware of any concrete results for
PESP that could apply to PMS, as PESP is usually studied in conjuction
with several other constraints that render the problem quite hard and the

6.3. PRELIMINARIES 113

proposed methods for solving it are mainly algorithms with no guaranteed
efficiency based on “branch-and-bound”, “branch-and-cut”, and “branch-
and-price” methods. A similar problem as PMS has been defined in [43],
and it has been proven to be NP-complete. However, the setting is again
broader and the completeness results apply to general graphs.

There is a huge bibliography on railway optimization topics; the in-
terested reader is referred to [20] for a nice collection of concepts and
earlier results on railway optimization. More recent work on periodic train
scheduling includes a rolling stock minimization problem where routes are
given and it is sought to determine departure times either arbitrarily (as
in our case) or within an allowed time window [30]. However, the objective
there is quite different, namely to serve all routes with a minimum num-
ber of trains while it is allowed for routes to simultaneously depart from
the same station even if they follow the same direction (it is assumed that
multiples lines are available). The rolling stock minimization problem with
fixed departure times has been extensively studied: the simplest version,
also known as MINIMUM FLEET SizE [14], or ROLLING STOCK ROSTERING [31],
can be solved exactly in polynomial time; Dantzig and Fulkerson [27] give
the first known algorithm and Erlebach et al. [31] present one of improved
complexity. In [31], certain variations are also studied and shown APX-
hard: allowing empty rides and requiring that the trains pass through a
maintenance station.

Another problem that has recently drawn attention is that of delay
management, that is, the question of how to reduce or increase delays of
trains in order to better serve railway customers [70, 40, 41].

Very recently, Dahl [26] has studied a model which is quite closely
related to PERIODIC METRO SCHEDULING. It can be viewed as a special case
of PMS in which the routes only share a single edge and the question is
whether the frequency of each route can be adjusted so that there are no
collisions.

6.3 Preliminaries

We assume that all trains move at the same speed, therefore the duration
of traveling between any two connected stations is the same for all trains.
In the sequel we denote the travel time between two stations connected
by edge e as t(e). We also assume that edges represent directed railway
lines and any two connected stations are linked by a pair of opposite di-
rected edges. For simplicity we consider that the waiting time at stations
is negligible.

114 PATH COLORING APPLIED TO A TRANSPORTATION PROBLEM

We are interested in maximizing the minimum headway between any
two intersecting routes, that is, routes that share at least one edge. Note
that, due to the uniformity of speed, it suffices to measure the headway
between intersecting routes only at the starting node (station) of the first
edge of each common section. More precisely, let e be a common edge
between routes r and r’ and t (resp. t') be the time at which r (resp. r’)
enters edge e. Then, the headway between r and r’ at edge e is defined as
min{t —t' modT,t —t modT}. When the headway between two routes in
an edge is O, we say that the routes collide.

We will denote the source node of a route r by s(r), and its target node
by e(r). We define 1(i,j) to be the time distance between nodes i and j in
the input graph, whenever it is uniquely defined.

Let us now formally define the headway maximization problem.

Problem 6.1 (PErRIODIC METRO SCHEDULING, PMS).

Instance: (G, t, T,R), where G = (V,E) is a directed graph with bidirected
edges, t . E — N is an inter-station time distance function, T > O is an integer
time period, and R = {ry, ..., g} is a collection of simple paths defined on G
(routes).

Feasible solution: A schedule for R, that is, a function stime : R — [0, T)
which assigns a departure time to each route.

Goal: Maximize the minimum headway between any two intersecting routes.

We define L(e) to be the congestion on edge e, that is the number of
routes that pass through edge e of the network. Let L = max, L(e). It is not
hard to see that % is an upper bound to the objective value of an optimal
solution (OPT), because routes cannot be spaced further apart than % on
the edge with maximum congestion.

In our study we will pinpoint a close relationship between PMS and
PAaTH CoLoRING (PC), which is defined as follows:

Problem 6.2 (PaATH COLORING, PC).

Instance: (G,%P), where G is a directed graph and P = {p;,....pgp]} is a
collection of simple paths defined on G.

Feasible solution: An assignment of colors to all paths of P such that inter-
secting paths are assigned different colors.

Goal: Minimize the number of colors used.

PatH CoOLORING (note that here we consider the directed version) can
be solved optimally in polynomial time in chains, stars, and spiders by a
greedy algorithm (folklore, see e.g. [42]) using L colors, but is known to be
NP-hard in rings [39] and trees [55]. Note that a spider is a tree in which

6.4. HEADWAY OPTIMIZATION IN CHAIN, STAR, AND SPIDER NETWORKS 115

Algorithm 10 An algorithm for PMS in chain networks
Input: an instance (G, t, T, R) of PMS, where G is a chain
1: Compute a coloring of routes with exactly L colors from {O,...,L — 1},
using the greedy algorithm for PC in chains. Let color(r) denote the
color assigned to route r.
2: Set t = T and define L time slots as follows: 0,t.2t,....(L - 1)t.
3: Assign time slots to routes according to the coloring obtained in step 1,
namely: timeslotf) := color(r) - t.
4: For each route r € R set the starting time as follows:

stime() = (timeslot{) + (0, s(r))) mod T .

at most one internal node has degree 3 or greater (this is called the central
node), or equivalently, a graph resulting from a star whose edges have been
replaced by chains, also called legs of the spider.

We will use the notation a =; b to denote the fact that a modT =
b modT.

6.4 Headway Optimization in Chain, Star, and Spider
Networks

6.4.1 An Algorithm for Chains

In chains we label the nodes of the graph from O to n — 1 successively.
Since all connections are bidirectional we can divide any problem instance
into two subproblems, one containing routes moving to the right and one
containing routes moving to the left and solve them separately.

Let t; be the time distance from node itoi+ 1 fori=1,...,n—1. In
the case of chain networks, the time distance between two nodes i and j is
therefore:

j-1
w(if) = Z te . 6.1)
k=i

Our algorithm for PMS in chains makes use of the fact that PC can be
solved optimally for chain networks. The description of the algorithm is
presented in Algorithm 10.

Theorem 6.3. Algorithm 10 computes an optimal solution for PMS in chains.

116 PATH COLORING APPLIED TO A TRANSPORTATION PROBLEM

1§

)

I3 Iy

O
0

) ()
A4 A4
1 2

NGO

T/6 T/3 ?

T/6 T/6

Figure 6.1: An instance of PMS on a chain network.

Proof. Let r and r’ be two intersecting routes and without loss of generality
assume that s(r’) < s(r). The first point of their common section is s(r)
and their headway at s(r) is:

d(r,r’, s(r)) = min{(stime¢’) + = (s(r’), s(r)) — stimef)) mod T,

(stime() — (stime(’) + t(s(r’), s(r)))) mod T} . (6.2)

Note that

stime(’) + t(s(r'), s(r)) — stime() = timeslot¢’)+
7(0, s(r)) + t(s(r'), s(r)) — (timeslotf) + (0, s(r))) = (6.3)
timeslot¢’) — timeslot() ,

therefore

d(r, ', s(r)) = min{(timeslot¢’) — timeslot{)) mod T, 6.4
(timeslotf) — timeslot¢’)) mod T} . (6.4)

Since the difference between any two time slots is at least % and % is an
upper bound for the value of any feasible solution, the solution returned

by the algorithm is optimal. O

Example 6.4. Consider the instance illustrated in Figure 6. 1. The maximum
congestion is L = 3 and as a result the path coloring algorithm will yield a
solution with 3 colors. The time slots corresponding to these colors are: O,
g and 23—T Assume that routes r; and r, are assigned time slot O, route ry
is assigned time slot g and route r; is assigned time slot % According to
Algorithm 10, stime(;) = 2, stime(,) = %, stime() = 0. and stime(,) = 2.
Observe that on edge (1,2) the three intersecting routes ry, r,, and r3 have
headway at least g which is optimal. Furthermore, route r; reaches node 3
at time % (“wrapping around” the end of the time period), thus also having

headway g Sfromry.

6.4. HEADWAY OPTIMIZATION IN CHAIN, STAR, AND SPIDER NETWORKS 117

Algorithm 11 An algorithm for PMS in spider networks
Input: an instance (G, t, T, R) of PMS, where G is a spider
1: Compute a path coloring of routes with exactly L colors from {O,...,L—
1}. Let color(r) denote the color assigned to route r.
2: Set t = 1 and define L time slots as follows: 0, t.2t,...,(L— 1)t.
3: Assign time slots to routes according to the coloring obtained in step 1,
namely timeslot{) := color(r) - t.
4: For each route r passing through the central node, set starting time

stime() = (timeslot{) — (0, s(r))) mod T .

5. For each route r confined in a single leg and directed towards the central
node, set starting time

stime() = (timeslot{) — (0, s(r))) mod T .

6: For each route r confined in a single leg and directed away from the
central node, set starting time

stime) = (timeslotf) + (0, s(r))) modT .

6.4.2 An Algorithm for Stars and Spiders

Given an instance of PMS on a star or a spider, we will utilize an optimal
path coloring of the given instance in order to produce an optimal time
schedule. Note that an optimal path coloring can be computed by an exact
algorithm for spiders which can be obtained by appropriate combination
of a known exact algorithm for stars and the greedy algorithm for chains.
We should note that some routes may be confined in one of the spider’s
legs while others may be directed from one leg to another.

Theorem 6.5. Algorithm 11 computes an optimal solution for PMS in spi-
ders.

Proof. We will first prove the claim for the case where the spider is a star.
Let r and r’ be two intersecting routes. Therefore they receive different
colors, hence also different time slots. There are two cases: either s(r) =
s(r’) or e(r) = e(r’). In both cases, it suffices to examine their headway at
the central node. Each route arrives at or departs from the central node at
time equal to its time slot. Therefore their headway is a nonzero multiple
of t = I, which is an upper bound for OPT.

118 PATH COLORING APPLIED TO A TRANSPORTATION PROBLEM

In a general spider network, we consider two cases. For two intersecting
routes that pass through the central node, we can use the same argumen-
tation as above for star networks. For two intersecting routes that lie in
the same leg, the proof is similar to the proof of Theorem 6.3 for chains
since it can be shown that the same properties hold considering either the
central node or the tip of a leg as the first node of the chain (possibly with
an appropriate time shift). O

6.5 PMS in Ring Networks

In the case of ring networks, that is, networks which consist of a single
cycle, we may assume that all trains travel in the same direction (clockwise,
without loss of generality), for the same reasons as for chains. Nodes are
labeled by picking one arbitrarily and labeling it O, then labeling every
other node 1, ..., n—1 starting from the neighbor of node 0O in the clockwise
direction. We define 1(i,j) as the time distance from node i to node j in the
clockwise direction. We also define the ring perimeter C as the total time
needed to travel around the ring.

For ring networks we can distinguish between two cases, depending on
whether the ring perimeter C is an integer multiple of the period T or not.
In the following two sections we will analyze these cases.

65.1 TheCase C=70

Theorem 6.6. An instance of PMS in a ring with C =1 0 admits a solution
T

of headway at least 1. if and only if the corresponding PC instance can be

colored with at most k colors.

Proof. First, assume we are given a coloring of the routes with at most k
colors. We can produce the desired schedule by using Algorithm 10 for
PMS in chains, starting from Step 2 and using k instead of L. Let r and r’
be two intersecting routes; without loss of generality assume that s(r’) is
closer to O than s(r) in the clockwise direction. Because C =; 0, it can be
shown that it suffices to check their headway on only one of their common
segments, even if there are two such segments.

Following similar arguments as those in the proof of Theorem 6.3, it
can be shown that the headway is:

min{(timeslot() — timeslot¢’)) mod T, (timeslot¢’) — timeslot()) mod T} >
(

O

5)

6.5. PMS IN RING NETWORKS 119

For the inverse direction, suppose we have a schedule for the PMS
instance with headway at least % We will show how to obtain a coloring
with k colors for the corresponding PC instance. For each route r, let
timeslot¢) = (stimef) — (0, s(r))) modT. Assign to r the color w— 1, where
w is the smallest integer such that timeslot() < w- +. Since w ranges from
1 to k and for any two intersecting routes r and r’ their timeslots differ by
at least —, this is a valid coloring. O

Corollary 6.7. PMS in rings is NP-hard.

Proof. We give a reduction from the decision version of PC in rings to the
decision version of PMS in rings. PC is known to be NP-hard in rings [39].
Suppose we are given an instance of PC in a ring with n nodes and a path
set P, asking if P is colorable with k colors. We construct an instance
of PMS in a ring with n nodes, routes identical to the paths in %, inter-
station distances of one time unit and T = n, asking if it is possible to
achieve an objective function value of % Clearly, the corresponding PC
instance for the PMS instance we produced is the original PC instance.
Therefore Theorem 6.6 applies, implying that the original PC instance can
be colored with k colors if and only if a solution of value £ can be achieved

I
for the PMS instance. O

At a first glance Theorem 6.6 seems to imply that a p-approximation
algorithm for PC would give a /l)—approximation algorithm for PMS. How-
ever, this is true only in the case that the optimal solution for the PMS
instance divides exactly the period T. The following example, illustrated
in Figure 6.2, shows that in general the approximation obtained is smaller
than -.

Let us denote by OPTpys the value of an optimal solution of an instance
of PMS and by OPTpc the cost of an optimal solution of the corresponding
PC instance. We will present an infinite family of PMS instances in rings
with C =1 O for which OPTPMS is strictly greater than OPT , and is in fact
asymptotically equal to OPT . In this case we cannot directly utilize the
approximation guarantee prov1ded by an algorithm for PC to achieve an
equivalent (inverse) guarantee for PMS.

Consider a ring of 2n nodes with time distances between successive
nodes equal to 1 and time period T = 2n. The instance also consists of a
set of 2n — 1 routes ry,...,rp, with s(r;) =i—1,i = 1...2n - 1, routes
r,..., a,o traveling across two edges and route ry,_; traveling across three
edges. The maximum congestion of this instance is L = 2. It is not hard to
see that we need at least 3 colors to solve the corresponding PC instance.
We will present a solution that achieves a minimum headway of n — 1,

120 PATH COLORING APPLIED TO A TRANSPORTATION PROBLEM

2n-1 0

d T4

Figure 6.2: An infinite family of PMS instances in rings, in which a p-approximate
solution for PC does not yield an l—l)—approximate solution for PMS.

which is strictly greater than g = 23—” for n > 3, and is asymptotically equal
to g = n for large n.

Assign to each even-numbered route ry; starting time stimefy;) = i +
(0, s(ry;)) and to each odd-numbered route ry;,; starting time stime(y;) =
n+ i+ 1(0, s(ry;11)). The headway between an even-numbered route ry; and
the succeeding route ry;; is equal to n, while the headway between an
odd-numbered route ry;;; and the succeeding even-numbered route ry;,o
is equal to n — 1. Finally the headway between r; and ry,_; is also n — 1.
Therefore this solution achieves the desired headway.

The following theorem shows that it is still possible to use an approx-
imate solution to PC in order to achieve an almost as good approximate
solution for PMS.

Theorem 6.8. A p-approximation algorithm for PC in rings implies an (/l) ﬁ)—
approximation algorithm for PMS in rings with C =1 O.

Proof. We will use the algorithm described in the proof of Theorem 6.6. We
observe that OPTpys < #pc—l because a solution of PMS of value #Pc_l
would lead to a coloring with only OPTpc— 1 colors by Theorem 6.6. Recall
also that OPTpys < %

A p-approximation algorithm for PC returns a solution SOlpc < p -
OPTpc. By Theorem 6.6 we can compute a solution for PMS of value
SOlpys = soTch > 1 L By the observations above it turns out that:

p OPTec
1 T 1 T-0OPT; 1 L
SOlpys> = ————= = =M 5 = OPToys . (6.6)
OPTomrs +1 p T+ OPTpms p L+1

O

6.5. PMS IN RING NETWORKS 121

Figure 6.3: An example showing that the “path coloring” technique does not work
for rings with C #7 0. Assuming ©(0,u) = T and t(u,0) = % the path coloring
technique would assign time slots O and g to routes r; and ry respectively and the
two routes would collide at node O at any time which is an integer multiple of T.

Note that the family of instances presented above shows that the anal-
ysis of Theorem 6.8 is tight: the optimal solution is almost g = n and

the solution produced by directly exploiting an exact solution to PC is
2n L

= = —=n.

3 L+1

Corollary 6.9. Thereisa (% . ﬁ)—approximation algorithmand a (O. 73 ﬁ)

approximation randomized algorithm for PMS in rings with C =t O.

Proof. By using Theorem 6.8 and the deterministic approximation algo-
rithm of Karapetian [45] and the randomized approximation algorithm of
Kumar [48] that achieve ratios % and 1.368, respectively. O

652 TheCase C #1 0

Consider a ring network with n nodes and two routes ry, r, with 0 = s(r;) <
e(ry) < s(ry) < e(ry) and ©(s(ry), s(r2)) = x. Let t;, t, be the moments in time
where the trains traveling along r; and r, arrive at node 0. These trains
reach node s(r;) at times (t; + x) mod T and (t, — D+ x) mod T respectively,
where D = CmodT. As a result, in order to maximize the minimum
headway between the two trains, we have to take into account the following
time differences: (t; — t;) modT, (t, — t;) modT, (t, — t, + D) modT and
(t — t; — D)modT. It is now clear that the algorithm of Theorem 6.6
may produce an infeasible solution if D = (t, — t;) mod T (see Figure 6.3).
Therefore, we need a new algorithm for this case.

122 PATH COLORING APPLIED TO A TRANSPORTATION PROBLEM

We propose Algorithm 12 for PMS in rings where C #r 0. In order to
show the approximation ratio of Algorithm 12, we will need the following
two lemmata.

Lemma 6.10. Any two routes r, r’ that belong to . have headway at least

T
s;- The same holds for any two routes that belong to .

Proof. First, observe that any two routes in £, have headway at least 5%

in a scheduling produced by the algorithm, because their arrangement is
essentially the same as in the case of a chain network.

Consider now two routes r, r’ in £, to which the algorithm has assigned
time slots timeslot{) and timeslot{’), respectively. Suppose, without loss of
generality, that s(r’) > s(r). Itis clear that since they are assigned different
time slots these two routes cannot have a headway of less than % at node
0 and therefore neither at node s(r’). We now need to show that their
headway is not less than % at node s(r). We should examine two cases
depending on whether e(r) < e(r’) or not.

Suppose e(r’) > s(r). In that case, e(r’) > e(r) and r’ will be as-
signed a time slot before r. Route r’ will reach s(r) at time stime(’) +
1(s(r’), 0) + (0, s(r)) = timeslot¢’) + (0, s(r)). Route r departs from s(r) at
time stime() = timeslot{) — z(s(r), 0) = timeslot{) — D + (0, s(r)). However,
the headway between timeslot(’) + D and timeslot({) is at least % because
r’ was assigned a time slot before r and timeslot{’) + D was excluded from
So.

Let us now assume that e(r’) < s(r). In that case the two routes have
only one common segment that starts at s(r’) and contains 0. Therefore,

the fact that they have been assigned different time slots suffices to guar-

antee that their headway is at least 5% O
Lemma 6.11. Any two routesr € P, andr’ € P, have headway at least %

Proof. We need to show that their headway is at least % only at nodes

s(r) and s(r’) since these are the first nodes of the two possible common
segments of r and r’.

Let t, = timeslotf’) be the time when r’ passes through node 0. r’
reaches s(r) (if s(r) is contained in r’) at time (z(0, s(r)) + t,) mod T, and,
since stime() = (z(0, s(r)) + timeslot()) modT, if r and r’ had a headway
of less than % then they would have been assigned the same time slot,
which is a contradiction.

Route r arrives at s(r’) at time stime@) + t(s(r), s(r’)) = timeslotf) +
(0, s(r’)) while r’ departs from s(r’) at time stime(”’) = timeslot{’)—t(s(r’), 0)

=r timeslot{’) - D+ (0, s(r’)). If r and r’ had headway of less than z, then

Algorithm 12 An algorithm for PMS in ring networks with C #r O
Input: an instance (G, t, T, R) of PMS, where G is a ring with C #1 O
1: Split R into two sets Py and .. P, contains routes that pass through
node O (i.e., having node 0 as an intermediate node) and $. = R \ Po.
Let Ly = |Po| and L. be the maximum congestion with respect to ..
2: Define t = % and two sets of available time slots as follows: S, =

{0,t,2t,...,(BL' — 1)t}, S. = 0 where L’ = maxXLo, L.}.

3: Assign colors to routes of £. by using an algorithm for PC in chains.

4: for all colors k, 1 < k< L.do

5 if S, # (then

6: Select an item [from S..

7 else

8 Select an item [from S,.

9: end if

10: Set timeslot(c) = L.

11: for all routes r colored with color k do

12: Assign departure time stime() = timeslotc) + (0, s(r)).

13: end for

14: Remove [from S, and S;.

15: Move all time slots whose difference from [+ D is smaller than t from
Sp to S..

16: end for

17: Sort routes in P, in non-increasing order of ending point.
18: for all r € P, in the sorted order do

19: Select an item [from S,.

20: Set timeslot{) = L.

21: Set stime() = (timeslotf) — t(s(r), 0)) modT.

22: Remove [from S;.
23: Remove from S, all time slots whose difference from [+ D is smaller
than t.

24: end for

124 PATH COLORING APPLIED TO A TRANSPORTATION PROBLEM

timeslot¢’) would have a difference of less than -1~ from timeslot()+D which
is also a contradiction, since all time slots which have a difference of less
than z from timeslot{) + D were excluded from S, when r was assigned
its time slot. O

Theorem 6.12. Algorithm 12 is a %—approximation algorithm for PMS in
rings with C #r O.

Proof. First, let us observe that 6L’ time slots suffice to arrange the depar-
ture times of all routes. As far as routes in $, are concerned, each one
uses one time slot and excludes at most two others from Sy, in total using
at most 3L, time slots. Similarly, routes in £, use at most 3L, time slots.
A more precise analysis reveals that at most 2L, time slots are used by
Algorithm 12 to arrange routes in #., provided that L. > 3. Define for every
color k used in the first phase of the algorithm costfc) to be the number of
items removed from S, for that color. If S, # () when color k is examined,
then costfc) < 2. If S, = 0, this implies that costfc) = 3, but costf’) < 1 for
color k' which was examined immediately before k. Therefore the average
costfor k and Kk’ is at most 2. Notice that in the special case of the first
color examined, the three time slots that must be excluded from S, may
be used to accomodate the next two colors giving a total costof 6 for the
three colors. As a result, the average costfor all of the colors is at most 2,
leading to at most 2L, time slots being removed from S, for routes in #..
The difference between time slots in Algorithm 12 is % We only need
to show that the headway between any two intersecting routes at any point
is not smaller than the difference of the corresponding time slots. Since the
algorithm assigns different time slots to intersecting routes, the minimum
headway is at least 5% The three possible cases for two routes r and r’ of
the ring have been examined in Lemmata 6.10 and 6.11. The proof is now
complete. O

6.6 PMS in Tree Networks

In the case of tree networks one might attempt to use Algorithm 11 for
spiders, after picking an arbitrary node 0. However, this idea may lead to
the production of a solution with zero headway. Figure 6.4 illustrates this
situation.

However, if we consider tree networks in which the time needed to travel
along each edge is a multiple of g it turns out that we can use a simple
variation of Algorithm 10. In these networks the following useful property
holds.

6.6. PMS IN TREE NETWORKS 125

Figure 6.4: An example showing that Algorithm 11 for spiders does not work for
trees. Assuming that route r is assigned time slot O and route ry is assigned time

slot % route r; collides with route ry at node u at time g.

Remark 6.13. For any three nodes a, b, c: t(a, b) + ©(b, ¢) =r 1(a, ¢).

Theorem 6.14. An instance of PMS in a tree where the time needed to
travel along each edge is a multiple of g admits a solution of headway at
least % if and only if the corresponding PC instance can be colored with at
most k colors.

Proof. For the “if” direction we can produce the desired schedule by picking
a node arbitrarily, labeling it O, and then using Algorithm 10 for PMS in
chains, starting from Step 2 and using k instead of L.

Assume there are two routes r and r’ intersecting on a single edge e =
(u, v). Route r reaches node u at time (timeslot() + (0, s(r)) + t(s(r), u)) mod
T = (timeslotf) + (0, u)) modT. By the same reasoning route r’ reaches
node u at time (timeslot¢’) + (0, u)) mod T. Hence, the headway of the two
routes is equal to (timeslot{’) — timeslot¢)) mod T which is clearly at least
T

E.

For the “only if” direction, we pick an arbitrary node O and, for each
route r, we consider the value timeslotf) = stime() — (0, s(r)). Following
the proof of Theorem 6.6 and using Remark 6.13, we obtain a valid coloring

with k colors for the original PC instance. O
Corollary 6.15. PMS in trees is NP-hard.

Proof. We will reduce the decision version of PC in trees to the decision
version of PMS in trees. Given a PC instance and an integer k we will
construct a PMS instance with time distances between nodes equal to one

126 PATH COLORING APPLIED TO A TRANSPORTATION PROBLEM

time unit and period T = 2. Theorem 6.14 implies that it is possible to
achieve a solution of value at least % if and only if the original PC instance
can be colored with at most k colors. O

Theorem 6.16. A p-approximation algorithm for PC in bidirectional trees

implies a (/—Jm)—apprwamatlon algorithm for PMS in trees where the time

distances between nodes are multiples of I 5

Proof. The key observation is that if OPTpys > #Pc_l, then by using the
algorithm of Theorem 6.14 we could achieve a coloring with OPTpc — 1
colors, which is a contradiction. Therefore OPTpys < OPT - and the rest
of the proof follows along the lines of the proof of Theorem 6 8. O

Corollary 6.17. There is a(5 L+1)
where the time distances between nodes are multiples of £ 5

approximation algorithm for PMS in trees

Proof. By using Theorem 6.16 and the g-approximation algorithm of Er-
lebach et al. [34]. |

Similarly to the case for rings with C = O, the ﬁ factor can be justified
by presenting an infinite family of instances having OPTpys strictly greater
than ==— OPT and asymptotically equal to zz=— OPT . Consider a chain of 2n + 2
nodes numbered 0,...,2n+ 1, with addltlonal edges sticking out of nodes
1 and 2n connecting them to nodes v and v’ respectively, a time period
T = 2n and all edges having time distance g = n. The instance consists
of the following 2n + 3 routes: r, from v’ to v, rg from O to v, r¢ from v/
to2n+landr, i =0,...,2n—1 from i to i + 2, resulting in a maximum
congestion of L = 2.

The corresponding PC instance requires 3 colors but there is a PMS
solution that achieves a headway of n — 1, which is greater than g for
n > 3. Since the time distance of every edge is a multiple of g we can pick
an arbitrary root, assign a time slot to each route and set the starting time
as the sum of the time slot and the distance of the starting node from the
root. As shown above, this ensures that the headway between intersecting
routes is the difference of their respective time slots.

Set timeslot(,) = 0. timeslotg) = timeslot(c) = £ = n. For the even-
numbered routes set timeslot,;) = i and for the odd-numbered routes
timeslot(,,,) = g + i = n+i. Itis clear that this arrangement achieves a
headway of g between ru,rg and r,,rc, and a headway of at least n—1 = %— 1
between successively numbered routes. In addition timeslot(,,, ;) = 2n—1
leading to a headway of n — 1 between rc and ry,,—; as well. Therefore, this
is a solution which achieves a headway of g — 1. For an illustration see

Figure 6.5.

6.7. CONCLUSIONS 127

Figure 6.5: An infinite family of PMS instances in trees, in which a p-approximate
solution for PC does not yield an l—l)—approximate solution for PMS.

The infinite family of PMS instances presented shows that the analysis
of Theorem 6.16 is tight: the optimal solution is almost n while the ap-

proximate solution produced by exploiting an exact coloring is % = ﬁn.

6.7 Conclusions

We have introduced the PErRIODIC METRO SCHEDULING problem, which aims
at generating a periodic timetable for a given set of routes and a given time
period, in such a way that the minimum headway is maximized.

We have presented exact algorithms for chain and spider networks,
and constant ratio approximation algorithms for ring networks, as well as
for a special class of tree networks. Some of our algorithms make use
of a reduction to PATH CoLorRING. We have left open the question of the
approximability of PMS in general tree networks. Another interesting open
question is to study the model where only the end stations of a route are
given and one should determine both a path for each route and a departure
time; this model applies to topologies that contain cycles, such as rings,
grids and trees of rings.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

INFOCOM 2006. 25th IEEE International Conference on Computer Com-
munications, Joint Conference of the IEEE Computer and Communica-
tions Societies, 23-29 April 2006, Barcelona, Catalunya, Spain, IEEE,
2006.

Matthew Andrews and Lisa Zhang, Wavelength assignment in opti-
cal networks with fixed fiber capacity, ICALP (Josep Diaz, Juhani
Karhumadki, Arto Lepistd, and Donald Sannella, eds.), Lecture Notes
in Computer Science, vol. 3142, Springer, 2004, pp. 134-145.

, Complexity of wavelength assignment in optical network opti-
mization, in INFOCOM [1].

, Minimizing maximum fiber requirement in optical networks, J.
Comput. Syst. Sci. 72 (2006), no. 1, 118-131.

Elliot Anshelevich, Anirban Dasgupta, Jon M. Kleinberg, Eva Tardos,
Tom Wexler, and Tim Roughgarden, The price of stability for network
design with fair cost allocation, FOCS, IEEE Computer Society, 2004,
Pp- 295-304.

Baruch Awerbuch, Yossi Azar, Amos Fiat, Stefano Leonardi, and Adi
Rosén, On-line competitive algorithms for call admission in optical net-
works, Algorithmica 31 (2001), no. 1, 29-43.

Evangelos Bampas, Georgia Kaouri, Michael Lampis, and Aris
Pagourtzis, Periodic metro scheduling, ATMOS (Riko Jacob and
Matthias Miller-Hannemann, eds.), Dagstuhl Seminar Proceedings,
vol. 06002, Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

Evangelos Bampas, Aris Pagourtzis, George Pierrakos, and Katerina
Potika, On a non-cooperative model for wavelength assignment in mul-
tifiber optical networks, ISAAC (Seok-Hee Hong, Hiroshi Nagamochi,

129

130

BIBLIOGRAPHY

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

and Takuro Fukunaga, eds.), Lecture Notes in Computer Science, vol.
5369, Springer, 2008, pp. 159-170.

Evangelos Bampas, Aris Pagourtzis, George Pierrakos, and Vasileios
Syrgkanis, Colored resource allocation games, CTW (Sonia Cafieri, An-
tonio Mucherino, Giacomo Nannicini, Fabien Tarissan, and Leo Lib-
erti, eds.), 2009, pp. 68-72.

Evangelos Bampas, Aris Pagourtzis, and Katerina Potika, Maximum
request satisfaction in WDM rings: Algorithms and experiments, PCI
(Theodore S. Papatheodorou, Dimitris N. Christodoulakis, and Niki-
tas N. Karanikolas, eds.), Current Trends in Informatics, vol. A, New
Technologies Publications, 2007, pp. 627-642.

, Maximum profit wavelength assignment in WDM rings, CTW,
University of Milan, 2008, pp. 35-38.

, An experimental study of maximum profit wavelength assign-
ment in WDM rings, Networks (2009), to appear.

Ron Banner and Ariel Orda, Bottleneck routing games in communica-
tion networks, in INFOCOM [1].

Alan A. Bertossi, Paolo Carraresi, and Giorgio Gallo, On some match-
ing problems arising in vehicle scheduling models, Networks 17 (1987),
no. 3, 271-281.

Vittorio Bilo, Michele Flammini, and Luca Moscardelli, On Nash equi-
libria in non-cooperative all-optical networks, STACS (Volker Diekert
and Bruno Durand, eds.), Lecture Notes in Computer Science, vol.
3404, Springer, 2005, pp. 448-459.

Vittorio Bilo and Luca Moscardelli, The price of anarchy in all-optical
networks, SIROCCO (Rastislav Kralovic and Ondrej Sykora, eds.), Lec-
ture Notes in Computer Science, vol. 3104, Springer, 2004, pp. 13-22.

Dietrich Braess, Uber ein Paradoxon aus der Verkehrsplanung, Un-
ternehmensforschung 12 (1968), 258-268, available in English
in [18].

Dietrich Braess, Anna Nagurney, and Tina Wakolbinger, On a paradox
of traffic planning, Transport. Sci. 39 (2005), no. 4, 446-450.

BIBLIOGRAPHY 131

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Costas Busch and Malik Magdon-Ismail, Atomic routing games on
maximum congestion, AAIM (Siu-Wing Cheng and Chung Keung Poon,
eds.), Lecture Notes in Computer Science, vol. 4041, Springer, 2006,
pPp. 79-91.

Michael R. Bussieck, Thomas Winter, and Uwe Zimmermann, Discrete
optimization in public rail transport, Math. Program. 79 (1997), 415-
444,

Ioannis Caragiannis, Wavelength management in WDM rings to maxi-
mize the number of connections, STACS (Wolfgang Thomas and Pascal
Weil, eds.), Lecture Notes in Computer Science, vol. 4393, Springer,
2007, pp. 61-72.

Martin C. Carlisle and Errol L. Lloyd, On the k-coloring of intervals,
Discrete Appl. Math. 59 (1995), no. 3, 225-235.

Steve Chien and Alistair Sinclair, Convergence to approximate Nash
equilibria in congestion games, SODA (Nikhil Bansal, Kirk Pruhs, and
Clifford Stein, eds.), SIAM, 2007, pp. 169-178.

George Christodoulou and Elias Koutsoupias, The price of anarchy of
finite congestion games, STOC (Harold N. Gabow and Ronald Fagin,
eds.), ACM, 2005, pp. 67-73.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein, Introduction to algorithms, second ed., MIT Press, Cam-
bridge, MA, USA, 2001.

Geir Dahl, Disjoint congruence classes and a timetabling application,
Discrete Appl. Math. 157 (2009), 1702-1710.

George B. Dantzig and Delbert R. Fulkerson, Minimizing the number of
tankers to meet a fixed schedule, Nav. Res. Logist. Q. 1 (1954), no. 3,
217-222.

Reinhard Diestel, Graph theory, third ed., Graduate Texts in Mathe-
matics, vol. 173, Springer-Verlag Berlin Heidelberg, 2006.

Rudra Dutta and George N. Rouskas, A survey of virtual topology
design algorithms for wavelength routed optical networks, Optical Net-
works 1 (2000), no. 1, 73-89, also available as technical report TR-99-
06, North Carolina State University, College of Engineering, Computer
Science department.

132

BIBLIOGRAPHY

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

[38]

Stephan Eidenbenz, Aris Pagourtzis, and Peter Widmayer, Flexible
train rostering, ISAAC (Toshihide Ibaraki, Naoki Katoh, and Hirotaka
Ono, eds.), Lecture Notes in Computer Science, vol. 2906, Springer,
2003, pp. 615-624.

Thomas Erlebach, Martin Gantenbein, Daniel Hurlimann, Gabriele
Neyer, Aris Pagourtzis, Paolo Penna, Konrad Schlude, Kathleen
Steinhofel, David Scot Taylor, and Peter Widmayer, On the complexity
of train assignment problems, ISAAC (Peter Eades and Tadao Takaoka,
eds.), Lecture Notes in Computer Science, vol. 2223, Springer, 2001,
pp. 390-402.

Thomas Erlebach and Klaus Jansen, Maximizing the number of con-
nections in optical tree networks, ISAAC (Kyung-Yong Chwa and Os-
car H. Ibarra, eds.), Lecture Notes in Computer Science, vol. 1533,
Springer, 1998, pp. 179-188.

, The maximum edge-disjoint paths problem in bidirected trees,
SIAM J. Discrete Math. 14 (2001), no. 3, 326-355.

Thomas Erlebach, Klaus Jansen, Christos Kaklamanis, Milena Mihail,
and Pino Persiano, Optimal wavelength routing on directed fiber trees,
Theor. Comput. Sci. 221 (1999), no. 1-2, 119-137.

Thomas Erlebach, Aris Pagourtzis, Katerina Potika, and Stamatis
Stefanakos, Resource allocation problems in multifiber WDM tree net-
works, WG (Hans L. Bodlaender, ed.), Lecture Notes in Computer
Science, vol. 2880, Springer, 2003, pp. 218-229.

Eyal Even-Dar, Alexander Kesselman, and Yishay Mansour, Conver-
gence time to Nash equilibrium in load balancing, ACM Trans. Alg. 3
(2007), no. 3.

Dimitris Fotakis, Spyros C. Kontogiannis, Elias Koutsoupias, Mar-
ios Mavronicolas, and Paul G. Spirakis, The structure and complexity
of Nash equilibria for a selfish routing game, ICALP (Peter Widmayer,
Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy,
Stephan Eidenbenz, and Ricardo Conejo, eds.), Lecture Notes in Com-
puter Science, vol. 2380, Springer, 2002, pp. 123-134.

Michael R. Garey and David S. Johnson, Computers and intractability:
A guide to the theory of NP-completeness, W.H. Freeman and Company,
1979.

BIBLIOGRAPHY 133

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Michael R. Garey, David S. Johnson, Gary L. Miller, and Christos H.
Papadimitriou, The complexity of coloring circular arcs and chords,
SIAM J. Alg. Disc. Meth. 1 (1980), no. 2, 216-227.

Michael Gatto, Bjorn Glaus, Riko Jacob, Leon Peeters, and Peter Wid-
mayer, Railway delay management: Exploring its algorithmic complex-
ity, SWAT (Torben Hagerup and Jyrki Katajainen, eds.), Lecture Notes
in Computer Science, vol. 3111, Springer, 2004, pp. 199-211.

Michael Gatto, Riko Jacob, Leon Peeters, and Anita Schobel, The
computational complexity of delay management, WG (Dieter Kratsch,
ed.), Lecture Notes in Computer Science, vol. 3787, Springer, 2005,
pPp- 227-238.

Fanica Gauvril, Algorithms for minimum coloring, maximum clique, min-
imum covering by cliques, and maximum independent set of a chordal
graph, SIAM J. Comput. 1 (1972), no. 2, 180-187.

Zulfiikar Geng, Ein neuer Ansatz zur Fahrplanoptimierung im OPNV:
Maximierung von zeitlichen Sicherheitabstdnden, Ph.D. thesis, Univer-
sitat zu Koln, Mathematisch-Naturwissenschaftliche Fakultéit, Insti-
tut fur Informatik, 2003, in German.

George F. Georgakopoulos, Dimitris J. Kavvadias, and Leonidas G.
Sioutis, Nash equilibria in all-optical networks, WINE (Xiaotie Deng
and Yinyu Ye, eds.), Lecture Notes in Computer Science, vol. 3828,
Springer, 2005, pp. 1033-1045.

Iskandar A. Karapetian, On the coloring of circular arc graphs, DokKl.
Akad. Nauk Armyan SSR 70 (1980), no. 5, 306-311, in Russian.

Elias Koutsoupias and Christos H. Papadimitriou, Worst-case equilib-
ria, STACS (Christoph Meinel and Sophie Tison, eds.), Lecture Notes
in Computer Science, vol. 1563, Springer, 1999, pp. 404-413.

Leo G. Kroon and Leon W.P. Peeters, A variable trip time model for
cyclic railway timetabling, Transport. Sci. 37 (2003), no. 2, 198-212.

Vijay Kumar, Approximating circular arc colouring and bandwidth allo-
cation in all-optical ring networks, APPROX (Klaus Jansen and Dorit S.
Hochbaum, eds.), Lecture Notes in Computer Science, vol. 1444,
Springer, 1998, pp. 147-158.

134

BIBLIOGRAPHY

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Guangzhi Li and Rahul Simha, On the wavelength assignment problem
in multifiber WDM star and ring networks, IEEE/ACM Trans. Netw. 9
(2001), no. 1, 60-68.

Christian Liebchen, A cut-based heuristic to produce almost feasible
periodic railway timetables, WEA (Sotiris E. Nikoletseas, ed.), Lecture
Notes in Computer Science, vol. 3503, Springer, 2005, pp. 354-366.

Christian Liebchen and Rolf H. Mohring, A case study in periodic
timetabling, Electr. Notes Theor. Comput. Sci. 66 (2002), no. 6.

Tze-Heng Ma and Jeremy Spinrad, Avoiding matrix multiplication, WG
(Rolf H. Moéhring, ed.), Lecture Notes in Computer Science, vol. 484,
Springer, 1990, pp. 61-71.

Luciano Margara and Janos Simon, Wavelength assignment problem
on all-optical networks with k fibres per link, ICALP (Ugo Montanari,
José D. P. Rolim, and Emo Welzl, eds.), Lecture Notes in Computer
Science, vol. 1853, Springer, 2000, pp. 768-779.

Marios Mavronicolas and Paul G. Spirakis, The price of selfish routing,
STOC, 2001, pp. 510-519.

Milena Mihail, Christos Kaklamanis, and Satish Rao, Efficient access
to optical bandwidth - wavelength routing on directed fiber trees, rings,
and trees of rings, FOCS, 1995, pp. 548-557.

Igal Milchtaich, Congestion games with player-specific payoff func-
tions, Games Econ. Behav. 13 (1996), no. 1, 111-124.

Ioannis Milis, Aris Pagourtzis, and Katerina Potika, Selfish routing and
path coloring in all-optical networks, CAAN (Jeannette C. M. Janssen
and Pawel Pralat, eds.), Lecture Notes in Computer Science, vol. 4852,
Springer, 2007, pp. 71-84.

Dov Monderer and Lloyd S. Shapley, Potential games, Games Econ.
Behav. 14 (1996), 124-143.

Clyde L. Monma and Victor K.-W. Wei, Intersection graphs of paths in
a tree, J. Comb. Theory B 41 (1986), no. 2, 141-181.

John Nash, Non-cooperative games, Ann. Math. 54 (1951), no. 2, 286~
295.

BIBLIOGRAPHY 135

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Christos Nomikos, Aris Pagourtzis, Katerina Potika, and Stathis Za-
chos, Routing and wavelength assignment in multifiber WDM networks
with non-uniform fiber cost, Computer Networks 50 (2006), no. 1, 1-
14.

Christos Nomikos, Aris Pagourtzis, and Stathis Zachos, Routing and
path multicoloring, Inform. Process. Lett. 80 (2001), no. 5, 249-256.

, Minimizing request blocking in all-optical rings, INFOCOM,

2003.

, Satisfying a maximum number of pre-routed requests in all-
optical rings, Comput. Netw. 42 (2003), no. 1, 55-63.

Christos Nomikos and Stathis Zachos, Coloring a maximum number of
paths in a graph, Workshop on Algorithmic Aspects of Communica-
tion, Bologna, July 1997.

Katerina Potika, Maximizing the number of connections in multifiber
WDM chain, ring and star networks, NETWORKING (Raouf Boutaba,
Kevin C. Almeroth, Ramon Puigjaner, Sherman X. Shen, and James P.
Black, eds.), Lecture Notes in Computer Science, vol. 3462, Springer,
2005, pp. 1465-1470.

Robert W. Rosenthal, A class of games possessing pure-strategy Nash
equilibria, Int. J. Game Theory 2 (1973), 65-67.

Tim Roughgarden and Eva Tardos, How bad is selfish routing?, J.
ACM 49 (2002), no. 2, 236-259.

M. Saad and Zhi-Quan Luo, On the routing and wavelength assign-
ment in multifiber WDM networks, IEEE J. Sel. Area. Comm. 22 (2004),
no. 9, 1708-1717.

Anita Schobel, A model for the delay management problem based
on mixed-integer-programming, Electr. Notes Theor. Comput. Sci. 50
(2001), no. 1.

Alexander Schrijver, Routing and timetabling by topological search,
Documenta Mathematica Extra Volume ICM III, 1998, pp. 687-695.

Paolo Serafini and Walter Ukovich, A mathematical model for periodic
scheduling problems, SIAM J. Discrete Math. 2 (1989), no. 4, 550-581.

136 BIBLIOGRAPHY

[73] Vijay V. Vazirani, Approximation algorithms, Springer-Verlag Berlin
Heidelberg, 2001.

[74] Adrian Vetta, Nash equilibria in competitive societies, with applications
to facility location, traffic routing and auctions, FOCS, IEEE Computer
Society, 2002, pp. 416-425.

[75] Peng-Jun Wan and Liwu Liu, Maximal throughput in wavelength-
routed optical networks, Multichannel Optical Networks: Theory and
Practice (Peng-Jun Wan, Ding-Zhu Du, and Panos M. Pardalos, eds.),
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 46, AMS, 1998, pp. 15-26.

[76] Peter Winkler and Lisa Zhang, Wavelength assignment and general-
ized interval graph coloring, SODA, 2003, pp. 830-831.

Thesis proudly powered by I4TEX

